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Perpetual superhydrophobicity

Alberto Giacomello,*ab Lothar Schimmele,b Siegfried Dietrichbc and
Mykola Tasinkevych*bc

A liquid droplet placed on a geometrically textured surface may take on a ‘‘suspended’’ state, in which

the liquid wets only the top of the surface structure, while the remaining geometrical features

are occupied by vapor. This superhydrophobic Cassie–Baxter state is characterized by its composite

interface which is intrinsically fragile and, if subjected to certain external perturbations, may collapse into

the fully wet, so-called Wenzel state. Restoring the superhydrophobic Cassie–Baxter state requires

a supply of free energy to the system in order to again nucleate the vapor. Here, we use microscopic

classical density functional theory in order to study the Cassie–Baxter to Wenzel and the reverse transition

in widely spaced, parallel arrays of rectangular nanogrooves patterned on a hydrophobic flat surface.

We demonstrate that if the width of the grooves falls below a threshold value of ca. 7 nm, which depends

on the surface chemistry, the Wenzel state becomes thermodynamically unstable even at very large

positive pressures, thus realizing a ‘‘perpetual’’ superhydrophobic Cassie–Baxter state by passive means.

Building upon this finding, we demonstrate that hierarchical structures can achieve perpetual super-

hydrophobicity even for micron-sized geometrical textures.

1 Introduction

Superhydrophobicity refers to an important class of surface
properties which include self cleaning,1 liquid repellency,2

anti-(bio)fouling, drag reduction,3 etc. Superhydrophobicity
is achieved by combining surface roughness and wetting
properties† such that the geometrical features of the surface
are filled by vapor.5 This corresponds to the so-called Cassie–Baxter
state for which the liquid is in contact only with the topmost
portions of the surface. This ‘‘suspended’’ state is fragile
because the composite (solid/liquid plus liquid/vapor) interface
may collapse into the fully wet Wenzel state in which the
superhydrophobic properties are lost. The technological appli-
cations of superhydrophobicity are therefore severely limited
by its fragility: depending on the environmental conditions
and on the wetting history, a surface may or may not exhibit
superhydrophobic properties. Here, we show that a class of nano-
sized roughnesses is capable of destabilizing the Wenzel state

thermodynamically, thus realizing virtually perpetual and robust
superhydrophobicity.

On rough hydrophobic surfaces the Cassie–Baxter state can
be either stable or metastable depending on the thermo-
dynamic conditions (e.g., pressure and temperature).6 The
transition from the (meta)stable Cassie–Baxter state to the
Wenzel state requires to overcome free energy barriers much
larger than the thermal energy kBT, even for surface asperities
of a few nanometers in size.7,8 These metastabilities generate
strong hysteresis in the wetting and dewetting processes on
such surfaces.9 On the other hand, the large free energy barriers
also imply that once the system has occupied the Wenzel state,
superhydrophobicity cannot be restored without supplying free
energy to the system.

In order to restore superhydrophobicity from the Wenzel
state the most effective strategy to date seems to be the applica-
tion of an electric field to the system.10–12 Other methods
include a magnetically driven Wenzel to Cassie–Baxter
transition13 and heating of the surface until boiling restores
the vapor pockets.14 All these active methods require special
preparations of the surface and/or of the liquid as well as a free
energy source; in addition, they cannot be easily applied to
large surfaces.

Passive methods for restoring superhydrophobicity are in
principle more economical and general than active ones. One
strategy for trying to passively ‘‘stabilize’’ the Cassie–Baxter state
is to shrink the size of surface decorations down to the nano-
scale.15 For instance, by using carefully designed hydrophobic
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† This generally requires a Young’s contact angle yY 4 901. However, special
reentrant2 and doubly reentrant4 textures can achieve a ‘‘superomniphobic’’
behavior, i.e., they also repel liquids with yY o 901.
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nano-textures of ca. 10 nm size it was possible to support
pressures up to several tens of atmospheres before mechanical
destabilization of the Cassie–Baxter state takes place at a
certain critical pressure Pc.9 Verho et al. realized hierarchical
structures via a regular texture (on the scale of ca. 10 mm) which
is decorated by superhydrophobic silicon filaments (on the
scale of 100 nm, grown on the micro-topography).16 With this
two-level topography the transitions between nano- and
micron-sized Cassie–Baxter states offer the opportunity that
they can be reversibly switched by using either local suction
(recovering the micron-sized Cassie–Baxter state from the nano-
sized one) or a jet of water at low pressures (creating the nano-
sized Cassie–Baxter state from the micron-sized one). Such
passive approaches provide several advantages, but they do
not eliminate the potential occurrence of the transition to the
Wenzel state, which can always be realized by thermally acti-
vated events or pressure changes.

The aim of the present study is to introduce a completely
passive method, which involves the thermodynamic destabili-
zation of the Wenzel state over a wide range of pressures
above the bulk liquid–vapor coexistence pressure. In this way,
a virtually perpetual superhydrophobic Cassie–Baxter state
is realized which is the only one allowed thermodynamically
within that pressure range. As shown below, this can be
achieved by properly choosing the surface chemistry and by
scaling the size of the surface roughness, here modeled as an
array of rectangular grooves, down to the nanometer range.
The required size of the roughness actually depends on the
contact angle of the surface; in principle the approach could
work even with groove widths w of the order of 7 nm. For such
surfaces, the Wenzel state can be eliminated for pressures as
high as 5 atm.

The idea of eliminating the Wenzel state is based on the
well-known fact that liquids have a spinodal, i.e., thermo-
dynamic conditions for which the liquid state is unstable and
disappears via cavitation. For pure liquids far from the critical
point, the spinodal is observed at strongly negative pressures P
(i.e., tensile stresses applied to liquid). For example, for bulk
water at ambient temperature this is estimated to be around
�150 MPa.17,18 However, by strongly confining the liquid it is
possible to shift this spinodal to positive pressures P. This is
known, e.g., for macroscopically extended hard19 and lyophobic
slit pores20 (see also ref. 21–23). In ref. 20 the authors estimate
that for confined water the liquid spinodal reaches, upon
varying the pore width w, the bulk liquid–vapor coexistence
line P0(T) at w E 5 nm. Recent studies have proposed a special
texture composed of a 2D square lattice of rectangular nano-
pillars with added nano-particles at the centers of the lattice
cells.24 Since in the fully wet Wenzel state the liquid penetrates
into the surface geometric features, the following question
arises: is it possible to destabilize thermodynamically the liquid
confined within the surface features at positive values of the
pressure by decreasing the spatial extent of the features? This
would provide a means to achieve a perpetual superhydro-
phobic Cassie–Baxter state. The present systematic study provides
a positive answer to the above question.

2 Model

Here we employ microscopic, classical density functional theory
(DFT) with the aim of determining for various systems the
spinodal pressure Psp of the confined liquid and the critical
pressure Pc of destabilization of the Cassie–Baxter state. In
particular, we study lyophobic nano-grooves of different widths
(Fig. 1) and lyophobic slit pores.

DFT is based on the minimization of the grand potential
functional

O½r� ¼ F ½r� þ
ð
d3rrðrÞ½VðrÞ � m�; (1)

where F[r] is the intrinsic Helmholtz free energy functional
encompassing the fluid–fluid interactions, r(r) is the fluid
number density at position r, V(r) is the substrate potential,
and m is the chemical potential. The equilibrium number
density is obtained by minimizing O[r] for appropriate choices
of the functional F[r] and of the substrate potential V(r). Here,
Rosenfeld’s fundamental measure theory is employed for that
contribution to F[r] which is due to the repulsive part of the
interaction among the fluid particles; this approach is known
to accurately describe molecular details of the structure of
simple liquids in confinement.25–27 The attractive part of the
fluid–fluid interaction is treated in a mean field fashion using
forces of the van der Waals type cut off at distances larger than
2.5s. The geometrical and chemical features of the wall can be
tuned by changing V(r), e.g., to render walls with grooves (see
Fig. 1 and the Appendix). The characteristic length and energy
scales of the system are set by the fluid particle diameter s and
by the fluid–fluid Lennard-Jones interaction parameter e. For
further details concerning the implementation of the DFT see
the Appendix and ref. 27 and 28.

The geometry of the system is illustrated schematically in
Fig. 1(a). Before introducing surface structures, the substrate
occupies the lower half-space and is associated with Young’s
contact angle yY. For each particular system, yY is computed via
independent calculations of the solid–vapor (gsv), solid–liquid
(gsl), and liquid–vapor (glv) interfacial tensions following Young’s
law cos yY � (gsv � gsl)/glv. In a second step, a rectangular groove
of height h and width w is excavated from the solid material.
Calculations of the wetting and dewetting processes in such
grooves are performed using a DFT code28 applying periodic
boundary conditions in the x and y directions. In these calcula-
tions the same mesh width of the computational grid has been
used as in those carried out in order to determine yY. The
temperature is kept fixed at T = 0.71Tc, where Tc is the critical
temperature of the bulk fluid.

3 Results and discussion
3.1 Pressure of the ‘‘groove’’-liquid spinodal

In order to follow the metastable branch corresponding to the
Cassie–Baxter (Wenzel) state at various pressures, we use initial
conditions with the groove being filled with vapor (liquid). In a
second step, we minimize the grand potential in eqn (1) in

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
O

ct
ob

er
 2

01
6.

 D
ow

nl
oa

de
d 

on
 9

/1
8/

20
24

 9
:4

4:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/C6SM01727D


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 8927--8934 | 8929

order to obtain r(r); the next point in the intrusion (extrusion)
curve is obtained by initializing the system with the previous
r(r) and increasing (decreasing) the pressure as shown by the
dashed (solid) arrows in Fig. 1. Black (red) arrows correspond to
w = 6s (w = 21s). In particular, Fig. 1(b) reports the filling
fraction F� N/(rlVg) of the groove as a function of the pressure in
the reservoir, while Fig. 1(c) shows the color-coded distribution
r(r)s3 which illustrates quantitatively the intrusion and extrusion

processes. Here N �
Ð
Dg
rðrÞd3r is the number of fluid particles

inside the domain Dg of the groove; rl is the bulk liquid density

at the corresponding pressure and Vg ¼
Ð
Dg
d3r ¼ w� h� Dy,

with Dy being the groove extension in the y direction.
Fig. 1(b) shows that at the critical pressure Pc = DPc + P0 the

intrusion branch jumps from the suspended Cassie–Baxter
state (small F) to the completely filled Wenzel one (large F): Pc

is the maximum pressure at which superhydrophobicity can
survive, before it becomes mechanically unstable. It is well

known that narrow grooves exhibit larger values of Pc (see the
discussion below). What is more surprising in Fig. 1 is that for
w = 6s the extrusion branch jumps from the Wenzel state to the
Cassie–Baxter state: this is the sought liquid spinodal pressure
Psp 4 0 in confinement (for w = 21s (red) DPsp is negative). For
P r Psp, the Wenzel state is unstable and superhydrophobicity
becomes perpetual.

In order to understand how Psp depends on the character-
istics of the surface, we performed DFT calculations similar to
those leading to Fig. 1 for grooves with various widths and
contact angles. The results reported in Fig. 2 show that by
increasing the lyophobicity of the surface (i.e., upon increasing
Young’s contact angle yY) the Wenzel state can still be eliminated
at DPsp 4 0 even from increasingly wide grooves, up to w = 21s (see
red squares in Fig. 2). In summary, confinement and lyophobicity
cooperate towards increasing Psp and can be engineered in order
to obtain perpetual superhydrophobicity. By adopting a typical
parameter value s = 0.34 nm corresponding to the Lennard-Jones

Fig. 1 Intrusion and extrusion of liquid in nano-grooves with fixed height h = 20s and for two widths w = 6s (black) and w = 21s (red); yY = 1211.
(a) Definition of the system: the dashed line represents the distance of closest approach to the wall for the centers of the blue fluid particles of radius 0.5s.
(b) Filling fraction F of the groove as a function of the pressure difference DP � P � P0, where P0 is the pressure of liquid–vapor coexistence in the bulk
at T/Tc = 0.71. The intrusion (dashed lines, open symbols) and extrusion (solid lines, full symbols) curves are obtained from (meta)stable DFT (see the main
text and the Appendix). All symbols correspond to the bulk liquid phase, i.e., P � P0 Z 0. (c) Number density distributions in units of s3 along the intrusion
and extrusion branches.
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potential for Argon29 and setting T = 300 K, one can estimate
that, for yY = 1341, in the case w = 6s the Wenzel state remains
eliminated up to DP = DPsp(yY) C 9.3 MPa and in the case
w = 21s up to DP C 0.5 MPa.

3.2 Grooves versus infinite slits

We now elucidate the influence of the substrate morphology
on the liquid spinodal. We first calculate, via the same micro-
scopic DFT, the (meta)stable states of the considered fluid in a
slit pore of width w and confined between two infinitely
extended planar walls having the same Young contact angle as
the substrate from which the grooves in Fig. 1 are excavated. The
slit pore calculations are performed via a 1d numerical code.
In this well known case the two states to be considered are the
capillary vapor and the capillary liquid.30 For yY = 1211 the
capillary liquid spinodal occurs at DPsp 4 0 only for slit pores
with w o 3s (solid red line in Fig. 3(a)). In the case of grooves,
however, the groove-liquid spinodal occurs at DPsp 4 0 already
for w t 6s (blue square). This demonstrates that the destabiliza-
tion of the confined liquid is facilitated by the groove geometry.
For the systems shown in Fig. 1 the groove height is sufficiently
large to ensure that the upper portion of the groove de facto does
not shift the liquid spinodal. Therefore, the density oscillations
induced at the two corners at the groove bottom and at the
bottom wall seem to be the main reason for the shift of the
spinodal towards higher pressures as compared to a slit with
the same width. It is useful to remark that this effect differs from
wedge drying, because (i) yY o 1351 and (ii) the presence of a
single corner is insufficient to obtain DPsp Z 0 as demonstrated
by the results for grooves with w 4 21s, for which DPsp o 0.

The shift of the spinodal is caused by the strong layering in
the liquid induced by the confinement (Fig. 3(c)): the layers
form ‘‘interference-like’’ patterns within the groove, which
become ‘‘destructive’’ for the liquid at the bottom corners. This
triggers a density depletion at the bottom corners, which is
further enhanced by the increased lyophobicity of the walls
near the corners due to the ‘‘missing’’ fluid–fluid interactions

at the corners as compared to a planar wall. For narrow grooves
these depletion zones at the bottom corners become connected
(see Fig. 3(c)) favoring the growth of a bubble and thus the
formation of the Cassie–Baxter state. This mechanism has
some resemblance to dewetting via the growth of unstable
surface waves (see, e.g., Herminghaus et al.31). Evans and
Stewart recently discussed how the local compressibility is
enhanced at a lyophobic wall, thereby enhancing the density
fluctuations;32 the present results suggest that the enhance-
ment is even stronger at corners.

Another important parameter to characterize superhydro-
phobicity is the critical pressure Pc for which the Cassie–Baxter
state ceases to be mechanically stable (Fig. 1(b)). At the macro-
scopic level of description Pc is determined by balancing the
hydrostatic pressure, as given by the Laplace law, and the z
component of the capillary forces acting upon the contact line due
to the liquid–vapor surface tension glv. In the case of rectangular
grooves this force balance renders the Kelvin–Laplace law:

DPc � Pc � P0 ¼ �
2glv cos yY

w
: (2)

The very same equation applies to the capillary condensation
pressure DPcc � Pcc � P0 at which the capillary-liquid and the

Fig. 2 Liquid spinodal pressure DPsp � Psp � P0 as a function of Young’s
contact angle yY for rectangular grooves with fixed height h = 20s and with
widths w = 6s (black), w = 11s (green), w = 16s (blue), and w = 21s (red).
For DP o DPsp(yY) the Wenzel state is eliminated.

Fig. 3 Summary of the main findings for lyophobic (yY = 1211) confined
systems (rectangular grooves and slit pores). (a) Bulk liquid–vapor coexistence
(orange) as well as capillary liquid and capillary vapor coexistence for slits at
DPcc (red crosses, interpolated by the dashed red line); Kelvin–Laplace law
(eqn (2), solid black line); corrected Kelvin–Laplace law with l = 0.3s (eqn (3),
dash-dotted black line). Concerning rectangular grooves, the interpolated
open blue and solid blue squares represent DPc and DPsp, respectively;
a second solid blue square occurs at DPsp o 0 and is not shown. Enlarged
views of the liquid layering (b) near the top corners in the Cassie–Baxter state
and (c) at the bottom corners in the Wenzel state for rectangular grooves with
w = 6s at the same pressure DP \ DPsp.
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capillary-vapor coexist in (macroscopic) slit pores, see, e.g.,
ref. 30.

It is known that the Kelvin–Laplace law can be improved on
the mesoscale by accounting for the formation of wetting films
at the walls of the slit pore.33,34 This gives rise to the correction

DPc;meso ¼ �
2glv cos yY
w� 3l

; (3)

where l is the thickness of the liquid wetting film; in the
present case it is of atomic size.34

As shown in Fig. 3(a), the Kelvin–Laplace law, eqn (2),
accurately predicts DPc for grooves with w Z 15s. In the same
range, eqn (2) also captures DPcc (dashed red line). For grooves
and slit pores with w r 15s both DPc and DPcc, as obtained by
DFT, are larger than what is predicted by eqn (2). More
specifically, DPcc falls in between DPc and the Kelvin–Laplace
law. By using l = 0.3s, which is within a plausible range, as a fit
parameter in eqn (3), we obtain a good agreement between DPcc

and DPc,meso for w 4 4s (black dash-dotted line). In contrast to
the macroscopic predictions, we find that the critical pressure
DPc for intrusion is different from the capillary condensation
pressure DPcc. Actually DPc is significantly higher than DPcc for
small groove widths w. Before we discuss the physics behind
this observation we also have to exclude potential numerical
errors which could influence this result. First, DPcc is calculated
by equating the free energies of a slit either filled with capillary
liquid or with capillary vapor. Although within this treatment
there is no explicit force balance at a liquid–vapor interface, the
coexistence pressure, defined via the pressure in the reservoir,
must be the same as one would obtain from a search for an
indifferent liquid–vapor interface position in the slit. Numerics
should not spoil this identity if otherwise the same conditions
are chosen. A more serious source of error could be in the
determination of DPc because the iterative computation of the
fluid number densities close to the critical intrusion pressure
converges very slowly. In order to ensure that metastable
configurations have indeed been found and that, in the vicinity
of the critical pressure, the appropriate intrusion pressure has
not been missed, we carried out computations starting from
distinct initial positions of the liquid–vapor interface and we
increased the number of calculated pressures (see Fig. 1(b)).
The error in DPc is estimated to be considerably smaller than
the difference between DPc and DPcc.

With this we turn to the physical mechanism which can lead
to the observed difference between DPc and DPcc. It has to be
linked to the fact that a groove, in contrast to an infinite slit,
has an open upper end and a capped bottom. Therefore, the
wetting properties of a segment of a groove side wall depend on
its depth in the groove, i.e., on its distance, say, from the upper
corner. In a coarse picture, the wetting properties of a wall are
determined by a balance of the loss of fluid–fluid interactions
versus the gain in fluid–solid interactions due to the presence of
the wall. For the lyophobic walls, as discussed here, one expects
that the wall segments close to the upper corner are less
lyophobic than an infinitely extended wall because less of the
fluid–fluid interaction is replaced by the weaker fluid–solid

interaction. Deeper in the groove the side wall segments
become more lyophobic and, for a very deep groove, the wetting
properties approach those of an infinitely extended slit. The
precise characteristics of these effective properties of the wall
depend on the details of the system. These generic considera-
tions explain our observation of a partial intrusion. Liquid
intrusion starting from the open upper end of the groove may
progress to some depth below the open upper end where the
side walls are less lyophobic, but it is stopped deeper in the
groove as a result of the side walls becoming increasingly
lyophobic (Fig. 3(b)). Whether the critical intrusion pressure
DPc is larger than DPcc or not might depend on details of the
shapes of the fluid–solid as well as of the fluid–fluid inter-
action. In our model the attractive part of both interactions is of
the van der Waals type with, however, the fluid–fluid inter-
action cut off at 2.5s. Therefore, at some distance below the
upper corner of the groove the side wall of the groove becomes
more lyophobic than an infinitely extended wall of the same
material, because the missing fluid–solid interactions are still
appreciable whereas the fluid–fluid interactions are cut off.
This would lead to an enhancement of DPc over DPcc with the
latter being based on the properties of infinitely extended walls.
Of course intrusion into grooves is influenced additionally by
specific confinement effects which become very pronounced
for very small groove widths. For instance, the liquid–vapor
interface at the open upper end of the groove has a structure
(see Fig. 3(b)) which deviates significantly not only from that of
a free liquid–vapor interface, but also from that between
capillary liquid and capillary vapor deep inside the groove,
which is a transient unstable configuration.

In order to summarize our remarks, deviations between
DPcc and the Kelvin–Laplace law arise because for very narrow
slits, due to various confinement effects, the force balance at a
liquid–vapor interface in an infinitely extended slit cannot be
reliably characterized in terms of size independent surface and
interfacial tensions. Deviations between DPc and DPcc can occur
because even quite deep into a groove the force balance at a
liquid–vapor interface might still deviate from that in an
infinitely extended slit; DPc is determined by the highest
pressure required to push the liquid through the open upper
end and further into the groove. In the present case, the two
upper corners effectively enhance the lyophobicity of the
groove, resulting in DPc 4 DPcc. In the general case, whether
DPc is effectively enhanced over DPcc and to which extent will
presumably depend on the detailed shapes of the fluid–solid
and fluid–fluid interactions.

3.3 Hierarchical structures

In many applications, nano-structures such as those proposed
here for realizing perpetual superhydrophobicity are too small to
achieve effects of technological relevance. Important examples
are submerged surfaces for drag reduction,3 in which slippage
increases with the characteristic dimension of the texture.35 In
such cases, and if it is advantageous to maximize the air volume
of the Cassie–Baxter state, larger textures, say above one micro-
meter, should be used. Larger structures are also more resistant
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to mechanical wear.36 However, the composite interface asso-
ciated with that scale is very fragile such that the ensuing
superhydrophobic state easily breaks down into the Wenzel
state, due to the very low corresponding values of DPc (see
eqn (2)). In order to increase the stability of a composite
interface, surfaces with multiscale hierarchical structures, as
illustrated schematically in Fig. 4, have been suggested, e.g., in
ref. 16 and 37.

Here we propose the concept of perpetual superhydrophobicity,
i.e., complete thermodynamic elimination of the Wenzel state, also
for micron-sized geometrical textures. The basic idea is to utilize
hierarchical surface structures, which exploit the perpetual super-
hydrophobicity of the nano-scale textures described above, in
combination with the so-called wedge drying phenomenon38–40

at larger scales. Micron-sized wedges immersed in a liquid at
bulk liquid–vapor coexistence, i.e., at DP = 0, exhibit spontaneous
drying when the condition

yY ¼
pþ c
2

(4)

is met,41 where c is the opening angle of the lower corners
of the larger texture (Fig. 4). Thus, for rectangular wedges
the (macroscopic) drying transition is expected to occur for
yY 4 1351 at DP = 0. It is worth noting that such large contact
angles can be rarely achieved for flat surfaces. However, as we
shall argue below, this can be easily realized if the walls forming
the micro-structure themselves carry a secondary nano-structure.
The latter coating must fullfill the following two requirements.
First, the nano-structure must realize perpetual superhydro-
phobicity over the whole desired pressure range (Fig. 2).
Second, the Cassie–Baxter state associated with the nano-
structure must exhibit sufficiently low liquid–solid contact
in order to weaken the attraction between the liquid and the
surface. This attraction can be quantified by means of the
effective contact angle yeff defined in terms of the excess
surface free energy per projected area:

cos yeff ¼
O0;vs � O0;ls

Aglv
; (5)

where O0,vs is the free energy at DP = 0 of the solid exposed to
the vapor, O0,ls is the free energy at DP = 0 for the nano-sized
Cassie–Baxter configuration, and A is the projected area of the
substrate surface. By introducing this definition, the nano-
corrugated surface exposed to the fluid is effectively treated
as a planar but chemically heterogeneous surface with area A.
This effective planar surface may be thought of as being
composed of the solid patches providing solid–fluid interfaces,
and patches above the vapor pockets, trapped inside the
structure, providing vapor–fluid (vapor–liquid and ‘‘vapor–vapor’’)
interfaces. The area fraction forming a solid–fluid interface is
denoted as fs. Note that the distinct contributions to O0 from
the two types of vapor pockets trapped inside the nano-grooves
(see above) are essentially identical to each other and they
approximately cancel each other in the difference in eqn (5).
The angle yeff also gives the contact angle at which a macro-
scopic liquid–vapor interface intersects the nano-structured
surface, provided their intersection line samples the solid
patches and the vapor pockets according to their respective
area fractions fs and 1 � fs, respectively. We further argue that
for yeff 4 1351 wedge drying occurs also for the considered
nano-structured surfaces, similar to the case of a planar homo-
geneous wall characterized by yY 4 1351.

Within our model we computed yeff via DFT for a nano-
groove with w = 6s, yY = 1211, and a solid fraction fs = 1/2
yielding yeff = 1411. This result is in fair agreement with
the macroscopic estimate yCB C 1391 obtained by using the
well-known macroscopic Cassie–Baxter equation42 cos yCB =
fs(cos yY + 1) � 1 for describing the contact angle yCB of sessile
droplets in the so-called ‘‘fakir regime’’.43 In deriving this
Cassie–Baxter equation, in the first step, effective solid–fluid
interfacial tensions are calculated as area weighted averages of
the solid–fluid and vapor–fluid interfacial tensions, which
characterize the patches forming the actual surface. In the
second step, these effective interfacial tensions are used in
Young’s law leading to the above expression for cos yCB.
In order to support the proposed wedge-drying mechanism
for restoring the Cassie–Baxter state on the micro-scale,
the nano-sized surface structure must be in the Cassie–Baxter
state which is guaranteed if it is perpetual. Otherwise, once
the liquid has intruded the nano-texture, a nucleus of vapor
forming at the edge of a wedge cannot grow, even if it is favored
thermodynamically for yY 4 1351, as the result of strong
pinning of the liquid–vapor interface near the intruded liquid
pockets. Therefore, in this case the proposed wedge-drying
mechanism becomes ineffective. In contrast to that, in the
nano-sized Cassie–Baxter state this pinning is much weaker
and we expect this mechanism to be effective.

4 Conclusions

Microscopic density functional theory has shown that the
fragility of the superhydrophobic state can be entirely healed
by a combination of nano-scale surface texturing (ca. 2 nm) and
lyophobic coating (yY = 1211). Nanoconfinement shifts the

Fig. 4 Illustration of the concept of hierarchical surface structures for
perpetual superhydrophobicity: two tiers are present, one on the nan-
ometer scale, which realizes a perpetual nano-Cassie–Baxter state, and
the other on the micrometer (or larger) scale, which inherits the ‘‘unbreak-
ability’’ of the smaller scale.
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liquid spinodal to very large pressures, up to 2.4 MPa, com-
pletely eliminating the Wenzel state over this very broad range
of pressures. Thus the proposed passive strategy is expected to
be robust against thermal fluctuations and abrupt changes in
the liquid pressure. In addition, the critical pressure for
the transition of the Cassie–Baxter state to the Wenzel state is
also increased by nano-confinement, more than what can
be expected based on the Kelvin–Laplace law (eqn (2)). Both
effects are highly beneficial for the applications of superhydro-
phobicity and call for thorough wetting experiments on
nano-structured surfaces. Based upon these properties of the
nano-textured surfaces, hierarchical structures could be designed
which would also support perpetual superhydrophobicity at the
micro-scale. Here, the key requirements for the nano-textures
are: (i) the occurrence of the spinodal of the nano-confined
liquid at DPsp 4 0; and (ii) sufficiently large values of the
effective Cassie–Baxter contact angle.

Appendix: density functional theory

In this study we use the fundamental measure theory (FMT)
due to Rosenfeld,25,26 which has been implemented into an
in-house numerical code as described already elsewhere.28

Further details on this type of classical density functional
theory are found in the review by Roth.27

Here we describe the computational domains used for obtain-
ing the intrusion and extrusion curves presented above. The
densities have been discretized on a grid and in most calculations
a mesh size of 0.05s has been used. For comparison some
computations have been repeated with a smaller mesh size of
0.025s. From a semi-infinite wall occupying the lower half space, a
parallelepipedic groove is excavated (Fig. 5). The height of the
groove is fixed to the value h = 20s while various widths are
considered: w = 6s, w = 11s, w = 16s, w = 21s, and w = 41s. Since
for technical reasons we have used a 3D DFT, despite the transla-
tional invariance of the system in the y direction, our computa-
tional box has a finite extent in this direction for which we have

chosen periodic boundary conditions. In order to speed up the
calculations, actually only one half of the domain is considered,
applying symmetric boundary conditions to the left side of the
domain (see Fig. 5). To the right side also reflecting boundary
conditions are applied which are equivalent to having a mirror
symmetry plane along the y–z plane, i.e., we effectively treat a
periodic array of grooves aligned along the y axis. The box dimen-
sions in the x direction have been chosen such that the ridge
separating the grooves has a width of 20s. A constant number
density is imposed at the top boundary of the computational box,
which is equivalent to prescribing the pressure in the system far
away from the wall. At the bottom boundary there is the wall.

The external substrate potential V(r) is the sum of a repulsive
contribution Vrep(r) and an attractive one Vatt(r): V(r) = Vrep(r) + Vatt(r).
We account for Vrep(r) in terms of a hard-sphere repulsion,
chosen such that the distance of closest approach is s/2,
i.e., the radius of the fluid particles. Vrep(r) is set to infinity
inside the zone of closest approach. Vatt(r) is taken as the linear
superposition of the attractive part Fw of a Lennard-Jones
potential between the fluid particles and the particles forming
the wall with a number density rw:

VattðrÞ ¼
ð
Dw

d3r0rwFwðr� r0Þ: (6)

Here the fluid–wall pair potential Fw(r � r0), which depends
on the distance between the positions r and r0 of the fluid and
wall particles, respectively, is integrated over the domain Dw

occupied by the wall; Fw(r � r0) = �4ew(sw/|r � r0|)6 (sw may be
considered to characterize the diameter of a wall particle). The
strength of the wall potential is determined by the parameter
combination uw� (2p/3)nwew where nw = rwsw

3 is the number of
wall particles in the volume sw

3. Instead of using this wall
strength we have chosen to characterize the fluid–wall inter-
action by the contact angles computed using Young’s law.
(In addition, Young’s contact angle depends on the ratio
between the fluid–fluid Lennard-Jones interaction parameter
and kBT which is kept fixed in all computations and given by
our choice T = 0.71Tc of the temperature.) Actually, for the mesh
width 0.05s used in most of our calculations, the computed
contact angles may be still off their fully converged values by
several degrees. However, our control computations using finer
meshes (mesh width 0.025s) show that essentially identical
spinodal or critical pressures are found, if we compare compu-
tations with the wall strengths tuned such that the contact
angles for the finer and the coarser grid are the same. This
implies that the contact angle is a measure of the fluid–wall
interaction which is quite robust against discretization errors,
provided all computations are carried out on the same grid.

The pressure is calculated from the following bulk equation
of state (which corresponds to the density functional which is
used here):

PðZ;TÞ ¼ 6kBTZ
ps3

1þ Zþ Z2

ð1� ZÞ3 þ
1

2
BlrZ

� �
(7)

where Z = ps3r/6 is the packing fraction, and Blr is related to the
integrated strength of the long-ranged attractive part of the

Fig. 5 Color-coded wall potential V(r) in units of e for a groove of width
w = 21s and height h = 20s. The actual computational domain used in this
study has the size Dx � Dy � Dz = 20.5s � 5s � 35.5s.
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fluid–fluid interaction potential ulr(r) as Blr ¼ 6
Ð

R3ulrðrÞd3r= ps3
� �

.
The chemical potential m of the reservoir can be expressed as a
function of Z and T:

mðZ;TÞ ¼

kBT � lnð1� ZÞ þ Z
1� Z

7þ 15Z
2ð1� ZÞ þ

3Z2

ð1� ZÞ2

� �
þ BlrZ

� �
:

(8)

The density (or, equivalently, the pressure) is always chosen
to lie either on the liquid side or at liquid–vapor coexistence of
the bulk phase diagram. The computational domain has a total
extent of Dx � Dy � Dz = (w/2 + 10s) � 5s � 35.5s. This domain
is discretized with 20 points per s for a total of ca. 40 millions of
points for the domain in Fig. 5.
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