Issue 87, 2016, Issue in Progress

Efficient synthesis of 2-phenyl-3-substituted furo/thieno[2,3-b]quinoxalines via Sonogashira coupling reaction followed by iodocyclization and subsequent palladium-catalyzed cross-coupling reactions

Abstract

In this paper, we report the successful synthesis of new 2-phenyl-3-substituted furo/thieno[2,3-b]quinoxaline derivatives from 2-chloro-3-methoxyquinoxaline and 2-chloro-3-(methylthio)quinoxaline by a three-step approach. The Sonogashira coupling reaction of the title compounds with terminal alkynes afforded 2-methoxy-3-(phenylethynyl)quinoxaline and 2-(methylthio)-3-(phenylethynyl)quinoxaline in good to excellent yields. The iodocyclization of the resulting compounds using ICl in CH2Cl2 afforded 3-iodo-2-phenylfuro[2,3-b]quinoxaline and 3-iodo-2-phenylthieno[2,3-b]quinoxaline. The subsequent palladium-catalyzed Sonogashira, Suzuki, and Heck reactions of the resulting iodo compounds led to the formation of 2,3-disubstituded furo/thieno[2,3-b]quinoxaline in high yields. All compounds were fully characterized by FT-IR, mass, 1H NMR, and 13C NMR spectral data. The synthesized quinoxaline derivatives were also screened against the two bacterial strains Escherichia coli and Micrococcus luteus.

Graphical abstract: Efficient synthesis of 2-phenyl-3-substituted furo/thieno[2,3-b]quinoxalines via Sonogashira coupling reaction followed by iodocyclization and subsequent palladium-catalyzed cross-coupling reactions

Supplementary files

Article information

Article type
Paper
Submitted
14 Jun 2016
Accepted
29 Aug 2016
First published
31 Aug 2016

RSC Adv., 2016,6, 83901-83908

Efficient synthesis of 2-phenyl-3-substituted furo/thieno[2,3-b]quinoxalines via Sonogashira coupling reaction followed by iodocyclization and subsequent palladium-catalyzed cross-coupling reactions

T. Besharati-Seidani, A. Keivanloo, B. Kaboudin and T. Yokomatsu, RSC Adv., 2016, 6, 83901 DOI: 10.1039/C6RA15425E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements