Issue 25, 2016

Mechanism of short-pulse-induced solute migration in comparison to continuous-light-driven thermal diffusion

Abstract

The aim of this work is to clarify the mechanism of photo-absorption-caused solute migration at the microscopic level. Experimentally, we respectively measured the short-pulse-induced and continuous-light-driven migrations of chloroaluminum phthalocyanine molecules dissolved in ethanol at two concentrations, 4.2 × 1017 cm−3 (7.0 × 10−4 M) and 1.2 × 1017 cm−3 (2.0 × 10−4 M). Theoretically, by verifying that individual solute molecules in the concentrated solution, compared to those in the dilute solution, absorb more photo energy collectively but less photo energy individually, we consider solute migration as net movement of individual solute molecules and then sequentially analyse how individual solute molecules absorb photo energy, convert the absorbed photo energy into translational excess energy intra-molecularly and carry out movement. Subsequently, by summing up movement of individual solute molecules in a unit of volume, we deduce the solute migration behaviours which coincide with the experimental results: for short pulse excitation, solute migration is more/less in the concentrated solution depending on the pulse energy; for continuous light irradiation, solute migration is always more in the concentrated solution regardless of the light power. Note that, in our theoretical deduction, the short-pulse-induced and continuous-light-driven solute migrations differ in that the former proceeds before inter-molecular relaxation becomes apparent and the latter carries on with inter-molecular relaxation practiced sufficiently. Accordingly, the former is non-quasistatic and the latter is quasistatic and thus referred to as thermal diffusion.

Graphical abstract: Mechanism of short-pulse-induced solute migration in comparison to continuous-light-driven thermal diffusion

Supplementary files

Article information

Article type
Paper
Submitted
02 Dec 2015
Accepted
19 Jan 2016
First published
28 Jan 2016

RSC Adv., 2016,6, 20671-20680

Author version available

Mechanism of short-pulse-induced solute migration in comparison to continuous-light-driven thermal diffusion

L. Lee, Y. Kuo, C. Wang, Y. Li, P. Huang, Cheng-I. Lee and T. Wei, RSC Adv., 2016, 6, 20671 DOI: 10.1039/C5RA25607K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements