A composition-controlled cross-linking resin network through rapid visible-light photo-copolymerization†
Abstract
An assembly that delivers well-defined functional materials, clinically practical procedures to make these materials in situ, and appropriate analytical tools for chemical structure and kinetic studies is desirable, though currently unavailable. Herein, we introduce a system that addresses this need through the development and characterization of a cross-linking resin network, which is achieved through rapid, visible-light induced polymerization in a solvent-free environment. This resin network is the result of co-polymerization of a distyrenyl-monomer with a dimethacryl-monomer. Ninety percent of vinyl conversion is achieved in seconds. In addition, an azeotropic composition is identified and confirmed through static end-point evaluation, sol–gel experiment, kinetic study, and mathematical modeling of data acquired via FTIR, real-time Raman and 1H NMR spectroscopies. These results yield opportunities for the design and development of new functional materials to be used in various applications.