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Tuning the metabolism of the anticancer drug
cisplatin with chemoprotective agents to improve
its safety and efficacy

Melani Sooriyaarachchi,a Graham N. George,bcd Ingrid J. Pickering,bcd

Aru Narendrane and Jürgen Gailer*a

Numerous in vivo studies have shown that the severe toxic side-effects of intravenously administered

cisplatin can be significantly reduced by the co-administration of sulfur-containing ‘chemoprotective

agents’. Using a metallomics approach, a likely biochemical basis for these potentially useful observations

was only recently uncovered and appears to involve the reaction of chemoprotective agents with cisplatin-

derived Pt-species in human plasma to form novel platinum–sulfur complexes (PSC’s). We here reveal

aspects of the structure of two PSC’s and establish the identification of an optimal chemoprotective agent

to ameliorate the toxic side-effects of cisplatin, while leaving its antineoplastic activity largely intact, as a

feasible research strategy to transform cisplatin into a safer and more effective anticancer drug.

Introduction

The serendipitous discovery of the antiproliferative effects of
cis-diaminedichloroplatinum(II) or cisplatin [CP] on E. coli cells
in the 1960s combined with its approval by the FDA in 1978
heralded the era of platinum-based chemotherapy.1 Despite the
subsequent FDA approval of second- and third-generation platinum-
based anticancer drugs, such as carboplatin in 1989 and oxaliplatin
in 2002,2 CP – which is intravenously administered either alone or in
combination with other anticancer drugs – remains one of the most
effective anticancer drugs that is used worldwide owing to its broad
spectrum of activity towards a variety of cancers, including testicular,
ovarian, head and neck, colorectal, bladder, cervical and lung cancer
as well as melanoma and lymphomas.3 Extensive studies into the
metabolism of CP have revealed that it constitutes a prodrug and it is
commonly believed that the binding of the CP-derived monoaqua
hydrolysis product [(NH3)2PtCl(H2O)]+ to DNA represents its
likely mode of action.3c Given the complexity of the intracellular
biochemistry of CP,3a,4 however, further studies are needed to
rule out whether other biomolecular mechanisms may also
contribute to its overall activity.

Severe toxic side-effects of CP

In contrast to so-called ‘molecularly targeted’ anticancer drugs
which target a single pathway to kill cancer cells, CP represents
a ‘shotgun’ cytotoxin which offers two major advantages: it is
active against many different cell types in a tumour and its
utilization is conceptually less susceptible to the development
of resistance (although it does occur).5 Shotgun cytotoxins,
however, also exhibit a dark side. With regard to CP, its
therapeutic use and efficacy is inherently limited by the severe
toxic side-effects that this metal-based drug exhibits on several
non-proliferating cell types,4c which often results in life-long
impacts on the quality of life of patients.6 For example, 30 to
60% of patients suffer from nephrotoxicity,7 more than 60% of
pediatric patients develop bilateral and permanent hearing
loss8 and up to 90% of patients develop neurotoxicity.3b

Although nephrotoxicity in patients can be somewhat amelio-
rated by increased hydration or the administration of mannitol,9

no approved procedures exist to completely eliminate ototoxicity;
the latter therefore constitutes a primary dose limiting factor.10

Likewise, there are currently no established clinical procedures to
reduce or ameliorate the neurotoxicity of this otherwise very
effective anticancer drug.11

Strategies to ameliorate the severe toxic
side-effects of Pt-based anticancer drugs

Owing to the efficiency of CP and its inherent limitations,
considerable research efforts are directed to improve the tumor
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selectivity of Pt-based anticancer drugs. This fundamental
challenge can be addressed either by synthesizing novel
Pt-compounds3c,12 or by improving the delivery of established
or newly synthesized Pt-based drugs to the tumor by drug-
delivery vehicles.13 The third principle approach – the one that
is of focal interest in the context of this mini-review – aims to reduce
the CP-induced severe toxic side-effects by the co-administration of
small-molecular-weight ‘chemoprotective agents’, while leaving the
anticancer effect of CP largely intact.14 Compared to the first two
approaches, the latter approach is potentially more cost effective
since it aims to selectively reduce the severe toxic side-effects of an
already FDA-approved Pt-drug with a chemoprotective agent that

may – ideally – already be approved by the FDA (i.e. costly drug
approval processes are avoided altogether).

Reducing CP-induced toxic
side-effects by ‘chemoprotection’

Numerous studies with animal models or patients have demon-
strated that chemoprotective agents, such as sodium thiosulfate
(STS),15 N-acetyl-L-cysteine (NAC),15a,16 amifostine,15c,17 sodium
diethyldithiocarbamate,10,15c,18

D-methionine,9,19
L-methionine,19a,20

L-glutathione (GSH),21 cimetidine,22 sodium salicylate,23
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L-carnosine,24 2,3-dimercapto-1-propanesulfonic acid,25 and
procaineamide hydrochloride26 can significantly reduce some
of the severe toxic side-effects of CP. While amifostine is the
only chemoprotective agent that has been specifically approved
by the FDA for CP therapy,27 STS and NAC have been approved
for the treatment of cyanide poisoning and for acetaminophen
overdose, while D-methionine is currently undergoing a phase 3
clinical trial to reduce noise-induced hearing loss.6

From a biochemical point of view, the perhaps surprising
lack of understanding as to the mode of action of the afore-
mentioned phenomenological observations at a molecular level
(i.e. the effect of chemoprotective agents on the metabolism of
CP) must be attributed to the complexity of biological systems
(e.g. the bloodstream) and a lack of appropriate tools to gain
insight. In this context, one is reminded of F. Dyson’s notion
that ‘‘New directions in science are launched by new tools
much more often than by new concepts. The effect of a tool
driven revolution is to discover new things that need to be
explained.’’ To this end, we have developed an instrumental
metallomics tool28 that allowed us to better understand the
underlying chemistry in order to ultimately translate this
straightforward approach to achieve actual benefits for cancer
patients. In brief, this metallomics tool allows to directly
analyze blood plasma for essentially all contained Pt-species
by using size-exclusion chromatography coupled on-line to an
inductively coupled plasma atomic emission spectrometer.
This principle approach dramatically reduces the complexity
that is inherently associated with the analysis of blood
plasma into all of its constituents because only the sub-
population of Pt-species is detected. It is useful to discuss some
key issues that pertain to this chemoprotection approach in
more detail.

Considerations pertaining to the
mechanistic aspects of the
‘chemoprotection’ approach

The bloodstream represents the first biological compartment
where chemical reactions between intravenously administered
CP and a chemoprotective agent may ensue. Although relevant
chemistry between CP (and its metabolites) and a chemo-
protective agent may also occur in internal organs,29 it is very
difficult to tune the metabolism of CP therein and it will
therefore not be further discussed. Conceptually, the intravenous
administration to a patient with an appropriate chemoprotective
agent should allow one to modulate the metabolism of CP in the
bloodstream, which will ultimately determine which Pt-species
are left in the blood circulation to subsequently interact with
healthy (unintended) and tumor tissue cells (intended) (Fig. 1).
In order to evaluate the potential of this ‘chemoprotection
approach’, one needs to first understand the metabolism of
CP in the bloodstream itself28b before one can probe the effect
that chemoprotective agents may exert on its metabolism
(Fig. 1) as well as other blood constituents, such as erythrocytes
as well as plasma proteins and metalloproteins.30

It is commonly believed that intravenously administered CP
does not hydrolyze in the bloodstream, owing to the comparatively
high concentration of Cl� (B100 mM) in human blood plasma.
After the addition of CP to human plasma in vitro, however, highly
toxic CP-derived hydrolysis products (CPHP)31 and plasma protein
bound Pt-species (Pt-PP) were present within as little as 5 min,28b,32

while the majority of Pt was still present as the parent drug. All
chemoprotective agents that we have investigated – STS, NAC,
D-methionine and GSH – affected the metabolism of CP in
plasma by producing additional Pt-peaks that did not match
the retention time of the Pt-peaks that were detected when only CP
was added to plasma (in this case Pt-peaks corresponding to CP,

Fig. 1 Conceptual depiction of the chemical reactions that occur
between cisplatin (CP) and chemoprotective agents in human plasma
in vitro as well as the repercussions that these Pt-species will exert in
the whole organism in vivo. CPHP refers to all CP-derived hydrolysis
products and PP refers to plasma proteins.
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CPHP’s and Pt-PP’s were detected).30,33 The additional Pt-peaks
were therefore assigned to novel Pt-containing sulfur complexes or
PSC’s in blood plasma.30,33 The mechanism of formation of these
PSC’s likely involves the reaction of the highly reactive monoaqua
hydrolysis product of CP – [(NH3)2PtCl(H2O)]+ – with each chemo-
protective agent.33b Based on this demonstrated ‘tunability’ of the
metabolism of CP with chemoprotective agents in blood plasma, it
is now possible to discuss potential advantages and disadvantages
of this principle approach to possibly improve Pt-based anticancer
drugs that are currently in use.

The advantages of a ‘chemoprotection approach’ are that the
identification of an inexpensive and safe chemoprotective
agent that can neutralize highly toxic CPHP’s31 should allow
one to reduce the severe toxic side effects of CP while minimally
affecting the efficacy of the parent drug CP (Fig. 1).32 There are
three potential disadvantages that have to be considered in the
context of this principle approach, (a) the chemoprotective
agent itself may exert adverse toxic effects by affecting the
integrity of endogenous plasma metalloproteins, such as trans-
ferrin, ferritin and Zn bound to human serum albumin (which
would result in potential toxicity),30 (b) the chemoprotective
agent may decrease the plasma lifetime of the parent CP (which
would decrease the efficacy of the latter) and/or (c) the PSC may
not be effectively excreted, which in turn could result in possible
organ toxicity (e.g. if the PSC traverses the blood–brain barrier).

Tuning the metabolism of CP with an
optimal chemoprotective agent

In the context of translating this chemoprotection approach30,32,33

into practical benefits for patients (e.g. reduction of ototoxicity,
neurotoxicity and/or nephrotoxicity), it is important to clearly
distinguish between information that can be obtained from
in vitro studies (e.g. using human plasma) and information that
can only be derived from in vivo studies (e.g. using an appropriate
animal model). In vitro studies are crucial to establish whether the

mode of action of a chemoprotective agent involves the formation
of a complex with CPHP’s in plasma. If this is the case, the
structure of the formed PSC can either be elucidated by X-ray
absorption spectroscopy (Fig. 2)34 and/or mass spectrometry
(Fig. 3).6 In vitro studies can also establish an effective molar ratio
between the chemoprotective agent and CP which will preclude
the formation of free CPHP’s in plasma and minimize a chemo-
protective agent-induced perturbation of endogenous plasma
metalloproteins.30,33b Furthermore, the antitumour activity of the
formed PSC’s and their acute (IC50) as well as their potential long-
term toxicity can be established by assessing toxicogenomic
endpoints35 in cell culture experiments using appropriate cell
lines. After the completion of these in vitro studies, in vivo studies
with an appropriate animal model are absolutely necessary to
further optimize the molar ratio between the chemoprotective
agent and CP, their order of injection as well as the time lag
between the administration of the two drugs.36 In addition, in vivo
studies are required to detect a potentially adverse organ
accumulation of a formed PSC (e.g. in the brain) and to assess
the clearance of formed PSC complexes from the bloodstream to
the kidneys and ultimately the urine.

Future outlook

The elucidation of the mechanisms by which chemoprotective
agents affect the metabolism of CP in the bloodstream is
absolutely critical in the context of developing a clinical treatment
protocol that can be employed to significantly reduce the toxic
side-effects of CP in patients while maintaining its antitumor
efficacy. This task is now within reach since state-of-the-art
metallomics tools can be applied in conjunction with animal
studies.30,33a,b In principle, the approach of selectively inactivating
the toxic hydrolysis products of CP in the bloodstream by an
optimal chemoprotective agent, while maximizing the lifetime of
the active anticancer prodrug CP in the blood circulation would
effectively transform this anticancer drug into a much safer one.

Fig. 2 X-ray absorption spectroscopy-derived structure of the [Pt(S2O3)4]6� that was isolated from PBS-buffer (STS : CP = 400 : 1). (A) Shows the Pt LIII

EXAFS oscillations and (B) the Pt–S phase corrected Fourier transforms, for data (red lines), together with the best fit (blue lines). Best fits indicated four
equivalent Pt–S at distance R of 2.31 Å, with s2, the mean square deviation in R, of 0.0031 Å2. The inset shows the energy minimized geometry optimized
density functional theory structure for [Pt(S2O3)4]6� constrained to S4 point group symmetry to assist with convergence. The computed Pt–S bond-
lengths were 2.33 Å, in excellent agreement with the EXAFS results, and both are in agreement with the Pt–S distance of the sole reported crystal
structure of a terminal thiosulfate bound to a Pt(II) ion.34
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This overall strategy may also allow one to improve the therapeutic
potential of CP (as well as other toxic metal-based anticancer
drugs) by escalating the dose that is administered to a patient.
This would be particularly useful as this would allow one to treat
even those patients in which the tumor has developed drug
resistance and where the CP dose can often not be further
increased because of the inherent severe toxic side-effects of CP.
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