Issue 15, 2016

Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions

Abstract

Bioactive compounds extracted from natural renewable sources have attracted increased interest from both industry and academia. Several biocompounds are present in red macroalgae, among which R-phycoerythrin (R-PE), which is a phycobiliprotein with a wide range of applications. The major drawback associated with it is the absence of an efficient, low cost and green extraction and purification methodology capable of recovering phycobiliproteins (and, in particular, R-phycoerythrin) from the biomass, while maintaining their structure and activity. The search for novel and higher performance extraction processes is thus of extreme relevance. In this work, aqueous solutions of ionic liquids were screened for the extraction of phycobiliproteins from Gracilaria sp. The most promising solvents were identified and operational conditions such as extraction time, solid–liquid ratio, solvent concentration and pH were optimized aiming to develop a new and more efficient approach to extract phycobiliproteins. The efficiency of the proposed process is demonstrated with aqueous solutions of cholinium chloride, since the extraction of phycobiliproteins was increased to 46.5% when compared with the conventional methodology, while the protein secondary structure and the chromophore conformation integrity are maintained.

Graphical abstract: Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2016
Accepted
28 Apr 2016
First published
02 May 2016

Green Chem., 2016,18, 4287-4296

Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions

M. Martins, F. A. Vieira, I. Correia, R. A. S. Ferreira, H. Abreu, J. A. P. Coutinho and S. P. M. Ventura, Green Chem., 2016, 18, 4287 DOI: 10.1039/C6GC01059H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements