Issue 11, 2016

High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries

Abstract

Non-aqueous redox flow batteries (NAqRFBs) employing redox-active organic molecules show promise to meet requirements for grid energy storage. Here, we combine the rational design of organic molecules with flow cell engineering to boost NAqRFB performance. We synthesize two highly soluble phenothiazine derivatives, N-(2-methoxyethyl)phenothiazine (MEPT) and N-[2-(2-methoxyethoxy)ethyl]phenothiazine (MEEPT), via a one-step synthesis from inexpensive precursors. Synthesis and isolation of the radical-cation salts permit UV-vis decay studies that illustrate the high stability of these open-shell species. Cyclic voltammetry and bulk electrolysis experiments reveal the promising electrochemical properties of MEPT and MEEPT under dilute conditions. A high performance non-aqueous flow cell, employing interdigitated flow fields and carbon paper electrodes, is engineered and demonstrated; polarization and impedance studies quantify the cell's low area-specific resistance (3.2–3.3 Ω cm2). We combine the most soluble derivative, MEEPT, and its tetrafluoroborate radical-cation salt in the flow cell for symmetric cycling, evincing a current density of 100 mA cm−2 with undetectable capacity fade over 100 cycles. This coincident high current density and capacity retention is unprecedented in NAqRFB literature.

Graphical abstract: High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2016
Accepted
15 Sep 2016
First published
15 Sep 2016

Energy Environ. Sci., 2016,9, 3531-3543

High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries

J. D. Milshtein, A. P. Kaur, M. D. Casselman, J. A. Kowalski, S. Modekrutti, P. L. Zhang, N. Harsha Attanayake, C. F. Elliott, S. R. Parkin, C. Risko, F. R. Brushett and S. A. Odom, Energy Environ. Sci., 2016, 9, 3531 DOI: 10.1039/C6EE02027E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements