Issue 43, 2016

Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems

Abstract

We present the first examples of dynamic supramolecular systems composed of cyclometalated Ir(III) complexes of the form of [Ir(C^N)2(N^N)]PF6 (where C^N is mesppy = 2-phenyl-4-mesitylpyridinato and dFmesppy = 2-(4,6-difluorophenyl)-4-mesitylpyridinato and N^N is 4,4′:2′,2′′:4′′,4′′′-quaterpyridine, qpy) and zinc tetraphenylporphyrin (ZnTPP), assembled through non-covalent interactions between the distal pyridine moieties of the qpy ligand located on the iridium complex and the zinc of the ZnTPP. The assemblies have been comprehensively characterized by a series of analytical techniques (1H NMR titration experiments, 2D COSY and HETCOR NMR spectra and low temperature 1H NMR spectroscopy) and the crystal structures have been elucidated by X-ray diffraction. The optoelectronic properties of the assemblies and the electronic interaction between the iridium and porphyrin chromophoric units have been explored with detailed photophysical measurements, supported by time-dependent density functional theory (TD-DFT) calculations.

Graphical abstract: Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2016
Accepted
22 Sep 2016
First published
22 Sep 2016

Dalton Trans., 2016,45, 17195-17205

Author version available

Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems

D. Rota Martir, G. J. Hedley, D. B. Cordes, A. M. Z. Slawin, D. Escudero, D. Jacquemin, T. Kosikova, D. Philp, D. M. Dawson, S. E. Ashbrook, I. D. W. Samuel and E. Zysman-Colman, Dalton Trans., 2016, 45, 17195 DOI: 10.1039/C6DT02619B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements