Issue 16, 2016

Effect of Na3FeF6 catalyst on the hydrogen storage properties of MgH2

Abstract

The effects of Na3FeF6 catalyst on the hydrogen storage properties of MgH2 have been studied for the first time. The results showed that for the MgH2 sample doped with 10 wt% Na3FeF6, the onset dehydrogenation temperature decreased to 255 °C, which was 100 °C and 162 °C lower than those of the as-milled and as-received MgH2 sample, respectively. The re/dehydrogenation kinetics were also significantly enhanced compared to the un-doped MgH2. The absorption kinetics showed that the as-milled MgH2 only absorbed 3.0 wt% of hydrogen at 320 °C in 2 min of rehydrogenation, but about 3.6 wt% of hydrogen was absorbed within the same period of time after 10 wt% Na3FeF6 was added to MgH2. The desorption kinetics showed that the MgH2 + 10 wt% Na3FeF6 sample could desorb about 3.8 wt% of hydrogen in 10 min at 320 °C. In contrast, the un-doped MgH2 sample desorbed only 0.2 wt% of hydrogen in the same period of time. The activation energy for the decomposition of the as-milled MgH2 was 167.0 kJ mol−1, and this value decreased to 75.0 kJ mol−1 after the addition of 10 wt% Na3FeF6 (a reduction by about 92.0 kJ mol−1). It is believed that the in situ formation of the active species of NaMgF3, NaF and Fe during the heating process could enhance the hydrogen storage properties of MgH2, due to the catalytic effects of these new species.

Graphical abstract: Effect of Na3FeF6 catalyst on the hydrogen storage properties of MgH2

Article information

Article type
Paper
Submitted
11 Jan 2016
Accepted
06 Mar 2016
First published
08 Mar 2016

Dalton Trans., 2016,45, 7085-7093

Effect of Na3FeF6 catalyst on the hydrogen storage properties of MgH2

N. N. Sulaiman, N. S. Mustafa and M. Ismail, Dalton Trans., 2016, 45, 7085 DOI: 10.1039/C6DT00068A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements