Issue 8, 2016

Ethylene oligomerization studies by nickel(ii) complexes chelated by (amino)pyridine ligands: experimental and density functional theory studies

Abstract

Reductions of imine compounds 2-methoxy-N-(1-(pyridin-2-yl)ethylidene)ethanamine (L1), 2-methoxy-N-((pyridin-2-yl)methylene)ethanamine (L2), N,N-diethyl-N-((pyridin-2-yl)methylene)ethane-1,2-diamine (L3) and 2-((pyridin-2-yl)methyleneamino)ethanol (L4) using NABH4 produced their corresponding amine analogues N-(2-methoxyethyl)-1-(pyridin-2-yl)ethanamine (L1a), 2-methoxy-N-((pyridin-2-yl)methyl)-ethanamine (L2a), N,N-diethyl-N-((pyridin-2-yl)methyl)ethane-1,2-diamine (L3a) and 2-((pyridin-2-yl)methylamino)ethanol (L4a) in good yields. Reactions of the (amino)pyridine ligands L1a–L4a with [NiBr2(DME)] afforded nickel(II) complexes, [NiBr2(L1a)2] (1), [NiBr2(L2a)2] (2), [NiBr2(L3a)2] (3) and [NiBr2(L4a)2] (4), respectively in quantitative yields. Molecular structures of complexes 2 and 4 confirmed the formation of the bis(chelated)nickel(II) complexes. Activation of complexes 1–4 with either EtAlCl2 or methylaluminoxane (MAO), produced active ethylene oligomerization catalysts to afford mostly ethylene dimers (C4), in addition to trimmers (C6) and tetramers (C8). Density functional theory studies provided valuable insight into the reactivity trends and influence of complex structure on the ethylene oligomerization reactions.

Graphical abstract: Ethylene oligomerization studies by nickel(ii) complexes chelated by (amino)pyridine ligands: experimental and density functional theory studies

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2015
Accepted
12 Jan 2016
First published
14 Jan 2016

Dalton Trans., 2016,45, 3407-3416

Author version available

Ethylene oligomerization studies by nickel(II) complexes chelated by (amino)pyridine ligands: experimental and density functional theory studies

G. S. Nyamato, S. O. Ojwach and M. P. Akerman, Dalton Trans., 2016, 45, 3407 DOI: 10.1039/C5DT04667J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements