Issue 17, 2016

11C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals

Abstract

The positron-emitting radionuclide carbon-11 (11C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [11C]methyl iodide or [11C]methyl triflate (generated from [11C]carbon dioxide or [11C]methane). Consequently, small molecules that lack an easily substituted 11C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [11C]Carbon dioxide itself, [11C]carbon monoxide, [11C]cyanide, and [11C]phosgene represent alternative reactants to enable 11C-carbonylation. Methodologies developed for preparation of 11C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. 11C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.

Graphical abstract: 11C [[double bond, length as m-dash]] O bonds made easily for positron emission tomography radiopharmaceuticals

Article information

Article type
Review Article
Submitted
13 Apr 2016
First published
08 Jun 2016

Chem. Soc. Rev., 2016,45, 4708-4726

11C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals

B. H. Rotstein, S. H. Liang, M. S. Placzek, J. M. Hooker, A. D. Gee, F. Dollé, A. A. Wilson and N. Vasdev, Chem. Soc. Rev., 2016, 45, 4708 DOI: 10.1039/C6CS00310A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements