Issue 36, 2016

Ultra-weak interlayer coupling in two-dimensional gallium selenide

Abstract

Beyond-graphene two-dimensional (2D) materials are envisioned as the future technology for optoelectronics, and the study of group IIIA metal monochalcogenides (GIIIAMMs) in 2D form is an emerging research field. Bulk gallium selenide (GaSe) is a layered material of this family which is widely used in nonlinear optics and is promising as a lubricant. The interlayer coupling in few-layer GaSe is currently unknown, and the stability of different polytypes is unclear. Here we use symmetry arguments and first-principles calculations to investigate the phase stability, interlayer coupling, and the Raman and infrared activity of the low-frequency shear and breathing modes expected in few-layer GaSe. Strategies to distinguish the number of layers and the β and ε polytypes are discussed. These symmetry results are valid for other isostructural few-layer GIIIAMM materials. Most importantly, by using a linear chain model, we show that the shear and breathing force constants reveal an ultra-weak interlayer coupling at the nanoscale in GaSe. These results suggest that β and ε few-layer GaSe show similar lubricant properties to those observed for few-layer graphite. Our analysis opens new perspectives about the study of interlayer interactions and their role in the mechanical and electrical properties of these new 2D materials.

Graphical abstract: Ultra-weak interlayer coupling in two-dimensional gallium selenide

Supplementary files

Article information

Article type
Paper
Submitted
01 Jun 2016
Accepted
09 Aug 2016
First published
01 Sep 2016

Phys. Chem. Chem. Phys., 2016,18, 25401-25408

Ultra-weak interlayer coupling in two-dimensional gallium selenide

R. Longuinhos and J. Ribeiro-Soares, Phys. Chem. Chem. Phys., 2016, 18, 25401 DOI: 10.1039/C6CP03806A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements