Preparation of deep UV transparent AlN substrates with high structural perfection for optoelectronic devices
Abstract
In this paper, the optimal growth conditions during the physical vapour transport of bulk AlN crystals are evaluated with regard to significantly increased deep UV transparency, while maintaining the high structural quality of the AlN crystals which are grown on N-polar c-facets. We show that carbon concentration [C], oxygen concentration [O], and the ratio between both concentrations [C]/[O] have a significant influence on the deep UV transparency. At 3[C] < [O] with [C] + [O] < 1019 cm−3, deep UV transparent AlN single crystals with absorption coefficients at around 265 nm (α265nm) smaller than 15 cm−1 can be prepared. These conditions can be achieved in the N-polar grown volume parts of the AlN crystals using growth temperatures in the range of TG = 2030–2050 °C and tungsten and tantalum carbide as getter materials for carbon and oxygen, respectively. Deep UV transparent AlN substrates (α265nm < 30 cm−1) ≥10 mm in diameter and of high crystalline perfection (rocking curve FWHM < 15 arcsec) are shown for the first time.