Issue 9, 2016

Recent progress in nanomaterials for gene delivery applications

Abstract

Nanotechnology-based gene delivery is the division of nanomedicine concerned with the synthesis, characterization, and functionalization of nanomaterials to be used in targeted-gene delivery applications. Nanomaterial-based gene delivery systems hold great promise for curing fatal inherited and acquired diseases, including neurological disorders, cancer, cardiovascular diseases, and acquired immunodeficiency syndrome (AIDS). However, their use in clinical applications is still controversial. To date, the Food and Drug Administration (FDA) has not approved any gene delivery system because of the unknown long-term toxicity and the low gene transfection efficiency of nanomaterials in vivo. Compared to viral vectors, nonviral gene delivery vectors are characterized by a low preexisting immunogenicity, which is important for preventing a severe immune response. In addition, nonviral vectors provide higher loading capacity and ease of fabrication. For these reasons, this review article focuses on applications of nonviral gene delivery systems, including those based on lipids, polymers, graphene, and other inorganic nanoparticles, and discusses recent advances in nanomaterials for gene therapy. Methods of synthesizing these nanomaterials are briefly described from a materials science perspective. Also, challenges, critical issues, and concerns about the in vivo applications of nanomaterial-based gene delivery systems are discussed. It should be noted that this article is not a comprehensive review of the literature.

Graphical abstract: Recent progress in nanomaterials for gene delivery applications

Article information

Article type
Review Article
Submitted
01 Jul 2016
Accepted
15 Jul 2016
First published
02 Aug 2016

Biomater. Sci., 2016,4, 1291-1309

Author version available

Recent progress in nanomaterials for gene delivery applications

E. Keles, Y. Song, D. Du, W. Dong and Y. Lin, Biomater. Sci., 2016, 4, 1291 DOI: 10.1039/C6BM00441E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements