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Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force.
It is shown that the average swim force acts like a body force — an internal body force. As a result, the
particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev.
Lett,, 2014, 113, 028103] and the ‘weight’ of the active particles. A continuum description is possible
when variations occur on scales larger than the run length of the active particles and gives a
Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles
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DOI: 10.1039/c5sm01318f may also display ‘action at a distance’ and accumulate adjacent to (or be depleted from) a boundary

without any external forces. In the momentum balance for the suspension — the mixture of active particles
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1 Introduction

The soft matter community has proposed several theoretical
approaches to investigate the behavior of active matter systems.
Thermodynamic-type models, such as the ¢* field theory,"
motility-induced-phase-separation,™® and density functional
theory,” treat active matter as a single substance and try to fit it
into the classical framework of the states of matter. For example,
the dilute-dense coexistence of active matter can be formulated as
a first-order gas-liquid phase transition.>®

Despite its success in explaining some states of active soft
matter, thermodynamic models are not sufficient when the
detailed dynamics, structure and deformation are of interest,
especially when external perturbations are applied. In these
situations, Fokker-Planck or Smoluchowski equations are often
used as they directly relate the individual swimmer’s Langevin
equation to the position-orientation (x,q) phase space prob-
ability density P(x,q,t), which gives all the detailed information
of interest. Active matter under an external force,” polarization,®
and rectification’ have been investigated with this approach.
When the detailed chemical propulsion mechanism or hydro-
dynamic interaction are considered, P(x,q,f) can be solved
together with the conservation equation for chemical species
concentration ¢(x,t) or the flow field wu(x,t), allowing detailed
knowledge of the dynamics, such as the system’s stability."°

The Smoluchowski approach, however, is not able to treat
concentrated systems where particle-particle interactions are
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plus fluid — only external body forces appear.

important, even for the simplest excluded volume interactions.
For dense active matter, simulation is the standard approach.
Active Brownian dynamics simulations of as many as 10’ particles
have been reported in order to investigate phase behavior.'" A few
simulations of active matter with hydrodynamic interactions have
also been reported.'>*?

Even with a wealth of simulation data, some fundamental
questions remain. For example, how does one predict the force
exerted on a boundary by (dense) active matter? Simulations
give an a posterior determination of the force,"*'*> while the
Smoluchowski approach can be used but only for dilute systems
when particle-particle interactions are ignored."®

For conventional atomic or molecular matter, at the particle
level there are Newton’s laws of motion and their phase-space
equivalent the Liouville equation. For active colloids, the corre-
sponding particle-level equations are the Langevin equation
and the Smoluchowski equation. Thermodynamics, whether
for conventional or active matter, does not permit any spatial or
temporal variation in properties and thus, while powerful, has
its limitations. To bridge the gap between the detailed particle
and the thermodynamic levels, conventional matter employs
continuum mechanics which applies out of equilibrium for
slow spatial and temporal variations. The purpose of this work is
to investigate and develop an analogous continuum mechanics
description for active matter.

In conventional matter, forces at the particle level do not
manifest themselves in the continuum momentum balance
unless they are external body forces. Interparticle forces con-
tribute to the continuum stress, but do not act as net forces at
the continuum level. For active matter the situation is more
complex and more interesting. As we show, the propulsive swim
force acting at the particle level that causes particles to move is
part of the hydrodynamic force the particles exert on the fluid,
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and thus when considering the momentum balance for the
suspension - the mixture of particles plus fluid - there is no net
hydrodynamic force and thus no net swim force acting on the
mixture; only external body forces appear. However, the sus-
pension is a two-phase mixture of active particles and fluid and
in the continuum momentum balance for the particle phase we
show that a net swim force appears directly and acts as an
internal body force. This net swim force is crucial for describing
the dynamics of active matter and for computing forces exerted
on boundaries.

The swim force plays a pivotal role in the swim pressure,’
whose introduction provided a new approach to understanding
the behavior of active matter. Active Brownian particles (ABPs)
that separate into dilute and dense regions are now understood
as a ‘gas-liquid’ coexistence. The decrease in the swim pressure
with concentration destabilizes the system resulting in phase
separation.>® The swim pressure is analogous to the osmotic
pressure of a chemical solute or of passive Brownian particles
and is the pressure needed to confine the active particles. In the
dilute limit the “ideal gas” swim pressure is V™ = U2 1tR/6
(in 3D), where 7 is the number density of active particles, ( is
their drag coefficient, U, is the swim speed, and 1y is their
reorientation time.’

While the swim pressure can be understood solely in terms
of this entropic confinement pressure and is independent of
the size of the swimmers,”> micromechanically, the swim stress
is given by the moment of the swim force (¢°*'™) = —n(xF ™),
where F*™™ = (U,q, with q the orientation vector of the swimmer
and x its position. The position is simply x(¢) = [*Upg(¢')d?’, and
thus, o™ = —n{ Uy ["(q(1)q(¢'))dt’ = —n{Us*tr /61 (for times
t >1g), arising from the random reorientation of the swimmer:
(q(tq(t)) = (1/3)exp{—2(t — t')/1x}- The ‘moment army’ for the swim
stress is the swimmer’s run length, / = Uytg.

The micromechanical definition of the swim stress thus
involves the swim force, which leads to questions about the
‘force-free’ nature of low-Reynolds number swimming. Further-
more, the swim stress sparked some recent discussion'” about
whether it is a true stress - is it equal to the force per unit area
on the bounding walls? - especially when the dynamics give
rise to polar order: a non-zero average orientation of the
particles, (q) # 0.

In this paper we first show the origin and definition of the
swim force that is consistent with the notion of ‘force-free’
motion. We then establish the global force (or momentum)
balance for active matter, focusing on the case when there is
net polar order (g), which corresponds to an average swim force
(FS™) We show that in the momentum balance for the active
particles, the average swim force acts just like a body force, with
the result that the force/area exerted by active matter on a
bounding wall is the sum of the swim pressure and the ‘weight’
of the active particles. Thus, the questions raised in Solon et al.'®
are straightforwardly resolved and in a manner completely
consistent with one’s intuition about forces and pressures.

Further, we show that a sedimentation-like system is
achieved for (F*™) # 0 without any external body force and
a continuum Boltzmann distribution holds just as for passive
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Brownian particles in a gravitational field. Active particles may
also accumulate adjacent to (or be depleted from) a boundary,
for example in response to an external stimulus (chemical,
light, etc.). The interesting aspect is that this accumulation
(depletion) occurs without there being any external force acting
on the particles; it is a true ‘action at a distance’.

Although an average swim force acting like a body force arises
naturally from the particle-level dynamics, it is nevertheless
surprising since, as mentioned before, it does not appear in
the macroscopic momentum balance for the entire suspension,
or mixture, of particles plus fluid.

2 The swim force

In self-propulsion at low Reynolds number by ‘force-free’ one
means that there is no external force causing the body to move.
The ‘internal’ forces that cause it to move arise from deforma-
tion of the body surface and are part of the total hydrodynamic
force (and torque), which, from the linearity of Stokes flow, can
be written as

FU=_Ryy - U—Rzp E—RzpOB —---

g-;drag + eg;swim , (1)

where we have grouped the force/torque together as a single
vector, ' = (F,L"™), and similarly for the translational/rota-
tional velocities: # = (U,Q2). The hydrodynamic tensors Rz,
R, etc. are functions of the body geometry only and couple
the force to the velocity, to the ‘squirming set’ E°(t), B%(t), etc.,
which characterize the ‘slip’ velocity at the body surface. A
derivation of (1) can be found in Appendix A.

In (1) the hydrodynamic force/torque is written as a sum of
two terms: (i) the hydrodynamic drag %9 and (ii) the propul-
sive or ‘swim’ force # '™, Eqn (1) provides the definition of the
swim force. That it is a real measurable force can be appre-
ciated by recognizing that if one wanted to keep the swimmer
from moving, say by trapping it with optical tweezers, the force/
torque the trap would exert is precisely 7™,

In addition to the hydrodynamic drag and swim force, active
particles can also be subject to thermal Brownian motion
(F® = 2kgTR40(t)), external forces such as buoyancy (F ),
and interparticle forces, for example repulsive interactions to
prevent overlap at finite concentrations (#F).+

In the simplest model of active particles the hydrodynamic
resistance tensor is an isotropic drag tensor Rpy = (I and the
swim force is F*"'™ = {Uyq. This is the ‘Active Brownian Particle’
(ABP) model:

0=—{U+F™™+F°+ F™ + F", (2)

The orientation vector q is subject to run-and-tumble or rota-
tional Brownian diffusion (Dg = 1/tg), which are equivalent,"®
and follows directly from the torque balance. For a spherical

swimmer, { = 6énna, where a is the particle size and # the

+ Hydrodynamic shear forces can also be present, but are not considered here;
they enter in eqn (1).

This journal is © The Royal Society of Chemistry 2015
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viscosity of the suspending Newtonian fluid. A more detailed
derivation of (2) can be found in Appendix A.

In this paper we focus on the ABP model (eqn (2)), with both
translational and rotational diffusion: Dr, Dg. The reorientation
time is tg = 1/Dg. The relative importance of advection by
swimming to translational swim diffusion is given by the
reorientation Péclet number’® Pey = an/(6DSWim) = a/Uytg, and
is also the ratio of the particle size to the swimmer’s run length.

3 The global force balance

Consider a very simple geometry where N swimmers are placed
between two parallel walls separated by a distance L whose
normals are along the z-direction as illustrated in Fig. 1. The
walls are of large extent (infinite) and system can be taken to
be periodic in the x- and y-directions. The walls are non-
penetrating to swimmers but allow the solvent to pass through
unimpeded - they are osmotic barriers. Each swimmer i experi-
ences a wall force F" when it ‘collides’ with a wall. The separation
L between the walls is sufficiently large so that the swimmers are
able to execute their random swim motion before colliding with
the walls - the swimmer’s size a and run length 7 are both small
compared to L.

The global force balance is the sum over all swimmers of
each individual Langevin eqn (2). At steady state > U; = 0 and

1

0 = N{Uy{q) + N(FeXt> + Frop + Fior, (3)
1
where (g) = NZqi, (FYy = ZFe’" and FY, = Z;F}V is the
i IS

force on the top wall and involves only those particles interacting
with that wall; a similar expression applies to the bottom wall.

) "f3 3 3

Fig. 1 Active Brownian particles (ABPs) in a container of height L in the
z-direction and periodic in the x- and y-directions. Each active particle
experiences a swim force FF“'™ = {Uqq, with g(t) the direction of swim-
ming. An external gravitational (&) and polarization (H) field may also be
applied. The top and bottom boundaries do not allow the particles to
escape (no flux), but the flow of fluid u is unimpeded - they are osmotic
barriers. The horizontal plane S(z) is the cross-section considered in global
force balance (4).

This journal is © The Royal Society of Chemistry 2015
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The Brownian and interparticle forces in (2) make no contri-
bution to the global balance. Brownian forces, by definition,
have zero average, while the interparticle forces are equal and
opposite when two particles interact.

The net force on the walls is balanced by the total external
body force acting on the particles within the volume plus the
total average swim force. As far as the particles are concerned,
an average swim force, (F™™) = (Uy(q), acts like just like a
body force - an internal body force.

Now consider a control volume composed of the bottom wall
and a horizontal plane at an arbitrary location z above the wall
(¢f Fig. 1). The global force balance is

0= J (stim Fexl)dV 4 FBot + J G(P) . ndS7 (4)
V(z) N

@)

where S(z) is the horizontal surface at z and ¢ is the force per
unit area or stress exerted on the material (i.e. particles) within
the control volume. (There is no contribution from the surfaces
in the x- and y-directions because of the assumed periodicity.)

The surface S(z) is of large horizontal extent and therefore
forms an average. If the variation in properties in the z-direction
is slow on the scale of the particle size and/or run length, we may
replace the surface stress with the particle-phase stress (at z)
found by standard averaging of the microscale dynamics (2) viz.:

(6®)) = —nkTI — n(x(F**™)") — n(xF"), (5)

where the first term on the RHS is the ideal gas Brownian
osmotic pressure and the last term is the collisional pressure
from the interactive forces. For the swim stress, the average swim
force must be removed when computing the stress: (F**™)' =
FSWim _ (pswimy,

The z-component of the force balance in (4) is

z

(n<Fth> + n<FZSWim >)dz, (6)

=) - |
0

where ITan = Fy' /A is the pressure on the bottom wall of area A,
11" is the pressure of the active suspension at z, and the
averages under the integral sign are number averages in the
horizontal plane. The force balance (6) requires no knowledge
of the distribution of active particles n(z), nor how or why there
may be an average swim force. The pressure on the wall differs
from the pressure of the active particles if there is a body force -
external or internal - acting on the particles. Indeed, in general,
if the pressure differs between two horizontal planes, then either
(i) the material between the planes must be accelerating, or
(ii) the pressure difference must be balanced by shear stresses at
the boundaries as in flow in a tube, or (iii) there must be body
forces acting throughout the volume.

The effect of an external body force is well-known, and our
derivation shows that an average swim force has the same effect.
An average swim force could exist throughout the volume if the
swimmers had a biased swimming, say due to a gradient in a
stimulant (chemical, light, etc.), or it can arise from the boundary
if the boundary were to promote a local orientational order.

Recently, Solon et al.'® derived the dilute limit expression for
the wall pressure when an external torque is applied to each

Soft Matter, 2015, 11, 6235-6244 | 6237
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ABP that collides with the wall and found that IT" depends on
the form of the torque and therefore concluded that the swim
pressure was ill-defined because, according to them, it depended
on the nature of the wall and therefore was not a ‘true’ pressure.
A nonzero torque induces a local (q) and therefore a nonzero
swim force that must be included in the momentum balance.
When this internal body force is included the global force
balance (6) is satisfied and the swim pressure is indeed well-
defined and independent of the boundaries.#

4 Particle-phase momentum balance

Straightforward averaging of the microscale dynamics (2)
results in the momentum balance for the particle phase:

0 = () + (FS™) + n(FS) + V(o). (7)
In (7) (j) = n((u,) — (w)) is the particle flux relative to the
1
suspension average velocity. Here, (u,) = NZ U;, and (u) =

d(u,) + (1 — ¢)(ug), with ¢ the volume fraction of particles and
(us) the average fluid velocity. Eqn (7) should apply locally at
each ‘continuum point’, provided, as is standard in any continuum
description, that there is a separation in scales with the macro-
scopic variations occurring on scales large compared to the
microstructural length scales, importantly the run length 7 = Uytg.

The momentum balance is used with the conservation of
particle number density:

%+V~(u)n+v-<j‘51>:0, (8)
to determine the spatial distribution of active particles. In
general, an equation for the orientation distribution (gq) is
needed, which can be found from the Smoluchowski equation
equivalent to the microscale dynamics (2). In the problems
discussed here it is not needed.

The global force balance, (3) or (4), applies quite generally.
In contrast, the continuum mechanics description, (7) and (8),
requires a separation of scales between the microscale and the
macroscale. While this separation is almost always true for
passive Brownian particles, it requires careful examination for
active matter, which we address in a future study.*

This completes the general discussion of the balance laws for
active particles. We now demonstrate by a few illustrative examples
that the average swim force acts as an internal body force and that
the particle-phase momentum balance can accurately predict the
concentration distributions and the forces on the walls.

5 The effect of internal and external
body forces
5.1 Passive particles with gravity

We first consider a suspension of passive Brownian particles in
a container as illustrated in Fig. 1. The swim force is zero,

i+ The body force contribution is identical to the second term in eqn (7) of Solon
et al.'®

6238 | Soft Matter, 2015, 11, 6235-6244
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F™™ = 0, and, when dilute, the particle phase stress is simply
the Brownian osmotic pressure (6”)) = —nkyTI; the collisional
stress is O(n*). In the absence of gravity, the number density is
uniform with height n(z) = ny and the pressure on walls from (6)
is the osmotic pressure ITyy, = IIT,, = noksT. With gravity, F™ =
ApV,g; the buoyant force is given by the density difference Ap =
pp — pr times the volume of a particle Vp and the acceleration of
gravity g. The passive Brownian particles behave like an iso-
thermal ideal gas in an external potential. At steady state there is no
suspension velocity, (&) = 0, and the particles cannot escape the
container, (j™) = 0. From (7) in the dilute limit, n(z) has a
Boltzmann distribution: n(z) = no(L/Lg)exp(—2z/Ls)/(1 — exp(—L/Lg)),
where Lg = kgT/ApV,, g is the sedimentation length. The pressures at
the walls are [T}, = n(z = 0)kgT and IIY,, = n(z = L)ksT, and their
difference, Ty, — Ty, = NoApV,gL, is the total buoyant weight
of the particles in the container, in agreement with the global
force balance (6).

5.2 Active particles with gravity

We now examine a similar system of swimmers (ABPs) under
gravity. Provided the gravitational forcing is not too strong
no polar order will be induced by the no flux boundary at the
bottom.”****' In 2D for a dilute system the swim stress
(o —n{Uy*tr/2I, and the total particle-phase stress is
(6)) = —n(ksT + k;Ts)I, where we define the swimmer ‘activity’
ksTs = {Uy’1R/2. We perform active Brownian dynamics simula-
tions in 2D with periodic boundary conditions in x and with a
hard-particle potential when particles collide with each other or
with either the top or bottom walls. Eqn (7) predicts a Boltzmann
distribution: n(z) oc exp(—ApV,g2/(ksT + ksTy)) in the dilute limit,
which is verified by simulation over a wide range of (dilute) area
fractions ¢} = nona’, reorientation Péclet numbers Peg = a/(Uyty) €
(0.2,5.0), with or without translational diffusion, Dy, and not too
large gravity (ApV,,g/((Us) < 0.2) as shown in Fig. 2. The global
force balance (3) (and (6)) is verified by measurement of the force
on the bottom wall in the simulations.

swim> —

5.3 Orienting field to cancel gravity

From the global force balance (3), if (F™*) and (F*"'™) cancel
each other, then Ty, = IIT,, and the continuum theory (7)
predicts a uniform distribution of active particles. To test this,
a non-zero (q) can be induced by an external polarization
field as discussed by Takatori and Brady.® An external field
H applies a torque Q.g x H to each swimmer and therefore
the orientation vector q aligns in the field direction and
diffuses around it through Dy = 1/tg. The strength of the
applied field is governed by the nondimensional field strength
yr = Q.. When yz — 0 the structure is isotropic, whereas
when yg — co all particles align and move in the direction H.
Each swimmer has a net average velocity Uy(q)(yr) due to the
field, which can be canceled by F/{. With an orienting field
the swim stress is anisotropic and given in ref. 8 in 3D and in
Appendix B for 2D.

Simulations were conducted in the same bounded geometry
with A and gravity both perpendicular to the walls for a wide
range of yr and F. The systems are homogeneous at steady

This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Active particles with gravity. The local area fraction ¢ vs. height z/a in 2D. The symbols are simulation results and the solid lines are solutions to
the continuum description (7). The log plot shows the same data as the linear plot. The dashed line corresponds to Boltzmann distribution
n oc exp(—ApVogz/(ksT + kTy)) = exp(—0.04z/a); here k(T = {Uo?tr/2. N = 1000 particles are simulated in a square box of size 250a, and $3 = 0.05.
The box is periodic in the x-direction but confined by two no-flux walls located at z = 0 and z = L. The inset compares the force on the bottom wall from
the particle—wall interactions in simulation with the buoyant weight of the particles.
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Fig. 3 Orienting field to cancel gravity. The wall pressure vs. simulation
time. Here, Peg = a/(Ugtr) = 0.2, Dy = 0, yr = Qctr = 1 and ApVpgrr/(a) =
2.23 = (g,)Ugtr/a. The inset shows the local area fraction ¢, as a function
of height z, sampled by Voronoi cells. N = 1668 particles are simulated in a
square box of size 512a at ¢% = 0.02. The data are averaged over 16
realizations. The system is periodic in the x-direction but confined by two
no-flux walls located at z = 0 and z = L. The theory for the dilute limit and
can be found in Appendix B.

state when gravity cancels the field (Fig. 3), and the wall
pressures are equal as the global force balance (3) requires.
Theory® predicts anisotropic stresses, and simulations were
conducted at low area fraction (¢, ~ 0.02) without translational
Brownian motion so that () = nk,Ty(6T"™HH + 6%"™(1 — AH)),
where 6™ and ¢5*'™ are nondimensional functions of yg. To
measure 6%*'™, the H field is applied parallel to the walls (case A
in Fig. 4); and for 6§*'™, A and the gravity field are perpendicular

to the walls and cancel each other (case B in Fig. 4). Fig. 4 shows

This journal is © The Royal Society of Chemistry 2015
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Fig. 4 The anisotropic wall pressures compared with the dilute 2D theory
(Appendix B). The circles are ABP simulations for Peg = a/(Ugtg) = 0.2,
Dy =0, ¢R=0.02and N = 1668. (A) for ¢ , the H field is applied in x-direction,
whereas (B) for 6, the H is applied in the z-direction and canceled by F&*. The
square box of size 512a is periodic in x and confined by no-flux walls located
atz=0andz = L.

that the pressures on the walls determined in simulation agree
with the theory.

5.4 No gravity but with an orienting field

The resemblance of a swim force to an external body force is
further illustrated by a system under a polarization field but no
gravity. A constant downward H field gives a ‘sedimentation-
like’ system with swimmers accumulating near the bottom wall
as shown in Fig. 5. The measured bottom wall pressure is equal
to the total ‘weight’ of the particles (divided by length L, in 2D):
N(F™™)/L_, as the global force balance (3) requires. Solving (7)

Soft Matter, 2015, 11, 6235-6244 | 6239
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Fig. 5 No gravity but with an orienting field. The local area fraction ¢a vs.
height z/a with the H field applied downward and F® = 0. The symbols
are simulation results and the solid line is the solution to the conti-
nuum description (7). The dashed line is a Boltzmann distribution ¢ oc
exp{—(F""™\z/(kgT + kT.6))} = exp(—0.04z/a), where kT, = (Uo’tr/2.
N = 1000 particles are simulated in a square box of size 250a at ¢3 = 0.05.
The box is periodic in x but confined by no-flux walls at z = 0, L. The inset
compares the force on the bottom wall from the particle—wall interactions in
simulation with the ‘weight’ of the particles due to the swim force.

with (F™'™) = (Uy(q)(zr) gives a Boltzmann distribution where
the concentration is dilute with the ‘sedimentation length’
Ly = (kgT + kSTS&ﬁWim)/(FSWim). The only difference compared
to normal gravity is the anisotropic swim stress manifested by
6™, As shown in Fig. 5 the calculated Boltzmann distribution
n oc exp(—z/Ly) agrees with the simulations. In the simulations
shown in Fig. 5, yx is adjusted according to (24), covering the
range yg € (0,3).

Comparing the n(z) distributions and the [T}, of passive
Brownian particles (Fig. 2) with swimmers under gravity (Fig. 5),
one sees clearly that with a non-zero (g) swimmers behave as if
acted upon by a body force. An internal body force F™™ = {Uy(q) =
(F*™) acts on each particle.

5.5 Depletion zone

Up to now we have considered the simplest cases in which polar
order was induced by an orienting field homogeneously
throughout the region between the two bounding walls. But
this is not necessary. Suppose that the orienting field acts only
over a length 4 < L. The effect of this field will lead to a
depletion (or an accumulation) of active particles near the
boundary depending on whether the field causes the particles
to swim away from or towards the boundary. If the field is
strong enough, there will be no particles contacting the wall
and thus T}, in (6) will be zero. For z > 4 there is no field and
(FE¥™Y = 0, while for z < 4, n ~ 0, and since the swim pressure
far from the wall is I1® = n{U,?1/6, the global force balance (6)
shows that there must be a transition region of thickness
O(/ = Uytgr) of high concentration of active particles near 4.
A particle swimming into the exclusion region z < 4 will, for a
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Fig. 6 A depletion zone induced by polarization. The local area fraction
$a vs. height z/a with the H field applied upward in the region z < L/4 and
F®* = 0. The solid lines are simulation. N = 1668 particles are simulated in a
square box of size 512a at ¢2 = 0.02. The box is periodic in x but confined
by no-flux walls at z = O, L. Peg = 0.2, Dy = azerA The inset checks the
global force balance (3) and (4).

reorientation time, be unaware of the field and continue
traveling at the swim speed. Fig. 6 demonstrates this behavior
where a polarization field H is applied only in the region z < L/4.
If the field is strong enough, yg > 1, there are no particles
adjacent to the wall.

This is a very interesting result in that there are no external
forces acting on the particles, yet they move away from the wall.
Passive particles cannot do this. By sensing their environment
(light, chemical, etc. stimuli) active particles can adjust their
internal swimming mechanisms and behave as if they experi-
enced an actual repulsive (or attractive) force. Note that we
modeled the orientation process as resulting from an external
torque due to the field, but this is not necessary. All that is
necessary is that the active particles adjust their swimming in
response to their environment and they can do this completely
internally by simply ‘choosing’ to swim towards or away from
the stimulus. No external torque (or force) is needed. It is truly
an ‘action at a distance’.

6 Suspension momentum balance

We have discussed the global force balance for the particle
phase, but have not yet addressed the macroscopic momentum
balance for entire suspension, or mixture, — the particles plus
the fluid. For the mixture it must be appreciated that F¥¢ and
FI™ at the particle level are both parts of the hydrodynamic
force F™ exerted by the fluid on the particles (eqn (1)). The
particles in turn exert the same force on the fluid, and thus only
the external body force appears in the macroscopic momentum
balance for the suspension:

0 = n{F*Y) + V(o). )
The average suspension stress is given by
() = —(p)I + 21(e) + (o), (10)
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where (e) = 1/2(V(u) + (V(u))") is the average rate of strain
tensor and ( pg) is the average pressure in the fluid.§ The fluid
pressure distribution does whatever is necessary to ensure the
incompressibility of the suspension average velocity, V-(u) = 0.
For example, when polar order exactly balances gravity (Fig. 3),
(6P)) is spatially constant, there is no flux of suspension ((z) = 0)
or particles ((j™) = 0) and the fluid pressure gradient is equal to
the external body force, V{( ps) = n(F®).

In the case where the orienting field gave rise to a depletion
zone adjacent to the bottom wall, the suspension momentum
balance shows that there will be a jump in the fluid pressure
across the transition region from no particles to bulk behavior

of magnitude 4(p;) = —\fO([)n<FSWim>dz.
Computational continuum-scale studies of active suspen-
sions'® employ the momentum balance (9).

7 Conclusions

Interpreting an average swim force as a body force was done
at two levels of description: (i) the global force balance (3), and
(ii) the continuum description (7). The global force balance looks
trivial because it involves only a simple sum of each swimmer’s
translational Langevin equation (2). The sum is performed with-
out any knowledge of how swimmers interact with the boundary,
how they orient in g-space, or how they are distributed in physical
space. Also, no assumption of a ‘continuum’ is necessary and
therefore (3) is quite general.

With the continuum approach, however, the difficult pro-
blem of determining the deformation and stress of active
matter is greatly simplified to solving (7) along with the con-
servation equation for the particle number density (8). Further,
the constitutive equation for the active stress, (6®)(¢,Peg,...),
is determined from homogeneous active matter systems® and
can then be used to predict the behavior in inhomogeneous
situations, just as is done, for example, for the Navier-Stokes
equations - the viscosity is measured in a uniform simple shear
flow and then used in any flow geometry no matter how
complex. When (F'™) (F™% are specified, the continuum
equations are closed and the concentration and stress, ¢(x,t)
and (6™)(x,t), can be determined everywhere. The force on a
boundary then follows from the standard continuum expression
[g(o) - ndS.

The continuum description, which predicted the Boltzmann
distributions for dilute systems, requires a separation of scales
between the variation in macroscopic properties, such as n(z),
etc., and the microscale, which for active matter is set by the
swimmer’s run length, / = Uytr (and/or particle size a). In very
dilute systems the run length can become large and if significant
polar order is induced at a boundary, a continuum description
may not be possible. In a future study’”® we show how to
accommodate these ‘non-continuum’ effects in the description
of active matter.

§ There may also be a hydrodynamic stresslet contribution that takes the form:
n(s") oc n{Upa(qq).
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As a final remark, we have considered average swim forces
that are the result of polar order, (q) # 0, as this is the most
obvious case. However, what is important is that there is
average swim force, (F*™) # 0, not that there is polar order.
Recently we have shown® that if there is a spatial variation in the
intrinsic swim speed Uy(x) or reorientation time tg(x), as might
happen if the local fuel concentration varies, to leading order
there is an average swim force: n(F*"'™) = —(¢""'™).VIn(Uytg).
This average swim force must then appear in the global force
balance (3) or (6) and in the continuum description (7).

Appendix A: the swim force of active
matter

There is a recurring discussion in the literature about the nature
and origin of the force causing self-propelled bodies to move at
low Reynolds number. The discussion revolves about the notion
that since self-propulsion is a ‘force-free’ motion, one cannot say
that a self-propelled body experiences a Stokes drag. Or that the
propulsive force can be written as a swim force F*¥'™ = {U,. And
if it is, this swim force is not a ‘true’ force. However, this is a
misunderstanding about what is force-free motion and the
nature of hydrodynamics at low Reynolds numbers.

The steady, non-accelerating motion of any body is force-
free. At low Reynolds numbers Re = pUa/y < 1, where p is the
density of the fluid, # is its viscosity, and U and a are the
characteristic velocity and length scales of the motion, respec-
tively, the acceleration of the fluid is negligible compared to the
viscous and pressure forces and all motion is thus force-free.
(We also specify that the inertia of the particle is negligible,
which is characterized by the Stokes number St = p,/p x Re « 1,
with p,, the particle density.) What is meant when one says that
self-propulsion at low Reynolds number is force-free is that there
is no external force causing the body to move. There are, however,
internal forces that cause it to move.

In the simplest description of self propulsion, consider a
body of fixed overall shape but whose surface can deform - a
‘squirmer’. A paramecium is the classic biological example and
phoretic colloidal particles can also be modeled as being
propelled by a local slip velocity at their surface.>>>* At a point
x on the surface of a the body, the fluid velocity u(x) = U + Q x
(x — X) + ©’(x), where «° is the ‘slip’ velocity, X is the body
center, and U and Q are the rigid-body translational and
rotational motion of the body about its center. The slip velocity
can be expanded in moments u*(x') = E>x’ + B%:(x'x' — I(x')*) + - -,
where x' = x — X, and the tensors E°(t), B%(¢), etc. are, in general,
functions of time and are determined by the swimming gait. The
linearity of low-Reynolds number or Stokes flow allows a familiar
moment expansion®® of the total hydrodynamic force/torque
F" on the swimmer

FH= _RzyU — RypE° — Rz O B° — -+,

(11)

where we have grouped the force/torque together as a
single vector in the same fashion as in Stokesian dynamics,
FH = (FA,I™), and similarly for the translational/rotational
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velocities: # = (U,2). The hydrodynamic resistance tensors
Rz, Rzg, etc. are functions of the body geometry only and
couple the force to the velocity, to the ‘squirming set’ E°(t),
BS(1), etc.

In the Stokes flow regime, the rigid body’s motion is over-
damped and thus force-free: 7 + F = 0, where # is any
external force such as gravity or an external torque. For a
passive (ie. non-swimming or non-active) body when
Ft =0, #™ = 0 and there is no motion. For a swimmer when
F =0, F7 = 0 is still true, but # # 0 in (11) - the drag,
—R 74U, cancels the swimming part, —Rzz:E° — Rz O B® — - - .
Indeed, we can define

FWM = _RowES — Ry O B — -, (12)

and

f?/—:drag = —Rj:a//'J?l,

(13)

and then the required force-free motion # = 779138 1 Zrswim =
gives

U = Ryy L-FWIM, (14)

Eqn (12) is the definition of the swim force (and torque). The
reorientation of a nonBrownian swimmer that gives rise to its
random walk arises from the squirming set E®(¢), etc. changing
direction (relative to the body fixed coordinate system). That
the swim force is a real measurable force can be appreciated by
recognizing that if one wanted to keep the swimmer from
moving, the force required is F*'™,

We have considered the simplest model for self-propulsion,
namely a squirmer. However, as shown by Swan et al>® the
exact same structure applies for swimmers that propel by large
deformations of their body shape - the hydrodynamic resis-
tance tensors are now also functions of time but the definitions,
(11)-(13), apply at each instant.

It is important to note that a nonzero swim force does not
imply that the fluid velocity disturbance caused by the swimmer
decays as 1/r as it would for a body with a nonzero hydro-
dynamic force. This is most clearly seen from the integral repre-
sentation for the solution to the Stokes equations. The velocity
field outside a particle in Stokes flow can be expanded in force
moments to give

1 H
= SFik ViduL;

= —JF}!

i(x) J

1
—5(Vidy + ViJu) Sii

: (15)

1
- EVijJi/Q}Z/ -

where the Stokeslet, 87/;;(x) = J;/r + x;x;/r”, is evaluated at the parti-

cle center. The hydrodynamic force and torque are given by their

usual expressions: F! = [¢-ndS, LY = [x' x ¢-ndS, and the
1.

stresslet is given by SH = EJ [¥'c-n+o-nx' —2n(u'n+ nu*)]dS,

with ¢ the fluid stress tensor; there is a corresponding expression for
the hydrodynamic quadrupole QY etc.
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Since the drag force 798 balances the swim force there is
no hydrodynamic force or torque on the swimmer: #™ =0 (F* =0,
L7 = 0), and the velocity disturbance decays at leading order as
1/r* coming from the stresslet ™. If the slip velocity does not
generate a stresslet, then the leading order velocity disturbance
decays as 1/r* corresponding to the quadrupole Q. And so on
depending on the nature of the propulsive mechanism and the
body geometry. There is no difficulty (or ambiguity) in speaking
about a swim force and a drag force for a self-propelled body
and the velocity disturbance generated by the swimming body
decaying faster than 1/r. In fact, Blake®* and Ishikawa et al.””
expanded the hydrodynamic interactions between two squirmers
in a series of surface radial and tangential velocity modes. These
modes may cancel such that the velocity disturbance decays as
1/7", which can be very fast for large n.

Even for a single particle, hydrodynamics can also generate a
single particle contribution to the active stress a, ~ n{Usa(qq),
which scales as n{Uya, as opposed to the swim stress that scales
as n{U,>tg. As discussed by Takatori et al.”> for fast swimmers
(Peg — 0), 61/6™™ ~ Upa/(Uy>tR) = a/(Uytg) = Peg — 0.

Considering other forces that affect the motion of active
particles, the overdamped Langevin equation of a set of swimmers
can be written as,

0= g;drag + :%—swim + gﬂ—B + g/;ext + gﬁPy [16)

where Z® = 2ksTR#,,4(t) is a Brownian force with zero mean,
F is any external force, and #" is a particle-particle inter-
active or collision force. The resistance tensors are now functions
of both the individual swimmer body shape and the relative
separation and orientation of all the swimmers, as is standard in
Stokesian dynamics.

In the simplest case where the hydrodynamic interactions
among the swimmers are neglected and only translational swim-
ming is relevant, the hydrodynamic resistance tensor R4 can be
simplified to an isotropic drag tensor (I, so that FI™ = —(7,
FS¥™ = (U,q, and we have the ‘Active Brownian Particle’ (ABP)
model eqn (2) of the main text. Here, ¢(¢) is the orientation vector
for the swimming direction and is subject to run-and-tumble
motion or rotational Brownian diffusion, which are equivalent,’
and comes from the torque balance in (16). For a spherical
swimmer, { = 6nya and the swim force arises from the quadru-
pole squirming set B(¢).

In this work we focus on this ABP model, with both trans-
lational (D) and rotational (Dg) diffusivity. In this case the
time scale is set by 1/Dg(= 1g), and the reorientation Péclet
number’® Per = aDy/U, = a// controls how far the swimmer
travels in one reorientation time - its run length / = Ugtg -
compared to its size a. The ratio Dy/(a’Dg) controls the relative
strength of translational Brownian diffusion and reorienta-
tional diffusion.

With Z "™ defined in (12), the suspension stress**? in the
absence of macroscopic shearing and external torques is:

(0) = —(pOI + (™) + (o") + (a”), (17)

where —(ppI is the isotropic (incompressible) fluid pressure,

(6™™) is the swim stress, (6°) = —nkgTI is the Brownian stress,*
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and (¢") is the particle collision stress. The swim stress (¢°*'™)
can be anisotropic if the swimmers’ reorienting process is
biased by, for example, an external torque. For the ABP model,
(™) has been thoroughly discussed in both the isotropic®
and anisotropic® cases. In the text, we have written the ‘particle
stress’ () = (6™™) + (6®) + (6") as is customary in colloidal
dynamics.

Appendix B: anisotropic stress under

H field

In this section we follow the convention of Frankel and Brenner*°
to derive the anisotropic swim diffusivity D**'™ and ideal gas
swim stress ¢*V'™ = —p{D*"™. Similar methods have also been
used in Zia and Brady’" and Takatori and Brady.® In Frankel and
Brenner’s theory q is a local degree of freedom. For the swimmers
considered here, g is the orientation vector of each swimmer. The
steady state distribution, Py°(g), is analytically solvable from the
Langevin equation for g:

dq

a:Qqug+ﬁa

(18)
where H is the unit vector in the direction of the orienting field,
Q. is its magnitude, and 7 is the rotational Brownian motion
characterized by Dg.

The orientation-average velocity is defined as:

W) = | Pr@U3s (19)

By decomposing AU(q) = U(q) — (U), the effective diffusivity is

given by
D= | 7@ i@ (g, (20)
where the B field is the solution to
Vg uPs"B — d-V 4(PyB)] = AUP;°, (21)
" P Bdg =0, (22)
Jq

with appropriate BC in g space. Here u and d are velocity and
(intrinsic) diffusivity in g space, respectively. For swimmers in
this work, u is the torque applied by the H field, and d = DglI is
the rotational diffusivity.

In a 2D system, g = (cos 0,sin 0), and we define H = (0,
steady probability distribution Pg°(6) is:

1). The

exp(—yg cos 0)

P(0) = 23
0 ( ) TEIO(XR) ( )
and the average orientation is
Ii(7r)
z) = ’ 24
(@) Io(xr) (4)

where yg = Q.tr = Q./Dg, and I, I, I,,. .. are Bessel functions.
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With the mathematical expansion

exp(zcos ) = Iy(z —0—221 cos(nb),

(25)

we have
pim o >\ L(xr) " J“ exp(—yr cos 0) sin 0sin(nb) 0.
pary nyrlo(xr) - 2nlo(7r)
(26)
The parallel diffusivity, D{¥™ is more complicated. First define
f(p) = = (p+m(yr) — sinplo(zr)
+11(XR)(p+n +2M+cospsinp>
Io(xr)
= 1 (xr) sin(np) (27)
; (Zr) nlo(xr)
cos(np) sinp — ncosp sin(np))
+ 2
n?—1
and
0
51(0)= | explumcosp)f (). (28)
Finally,

exp(—yr cos )
2nlo(xw)

. T ae
|slwun:J (COS@+ l(/(R)) %
- Iy (XR)
These expressions are used for the anisotropic swim stress in
the text.

BH (0)(19 (29)

Appendix C: solution of continuum
eqn (7)

The solution of the continuum eqn (7) at steady state requires a
constitute law: (6(p))(¢,U0,DT,rR). For the results in Fig. 2, the
constitutive law can be found in the work of Takatori and
Brady.® For the results in Fig. 5, k,Ts < kgT since U, is small,
and therefore the stress for passive Brownian particles in 2D*?
is used: (6®)(¢p,Up,Dr,1x) oc 1/(1 — ¢)*
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