Correction: Structural heterogeneity of milk casein micelles: a SANS contrast variation study

Antoine Bouchoux,‡ab Jorge Ventureira,ab Geneviève Gésan-Guiziou,ab Fabienne Garnier-Lambrouin,ab Peng Qu,ab Coralie Pasquier,ab Stéphane Pézennec,ab Ralf Schweinsc and Bernard Cabaned

The original manuscript contained an error in the labelling of the y-axis in Fig. 7, and in the graphical abstract. Please see the corrected figures below:

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Graphical Abstract

Fig. 7 Using non-homogeneous structural models for modeling the variation of R_g with contrast: an example with casein micelles from fresh milk (FM_s1). The description of the core–shell models is in the text. (A) gives the variation of the apparent radius of gyration R_g (i.e., including the contribution of fat droplets) as a function of D$_2$O content. In (B), we use a representation similar to the one used by Stuhmann, and that consists of plotting the squared radius of gyration of the casein micelle population R_g^{CM2} (i.e., without the contribution of fat droplets) as a function of the reciprocal of the contrast of the micelles, $1/R_g^{CM}$. Details about the calculation of R_g^{CM2} and $1/R_g^{CM}$ from the experimental data are given in ESI part F.

‡ Present address: Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés/LISBP, UMR5504/792 INRA-CNRS-INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex 04, France.