Issue 98, 2015

In silico prediction of linear free energy relationship descriptors of neutral and ionic compounds

Abstract

We present a prediction model for linear free energy relationship (LFER) descriptors – excess molar refraction (E), dipolarity/polarizability (S), hydrogen bonding acidity (A) & basicity (B), McGowan volume (V), and interaction of cations (J+) and anions (J) – of both ionic and neutral compounds at the same scale. From computational calculations using density functional theory, a conductor screening model, and the OBPROP program in Turbomole, we obtained the following physicochemical sub-parameters for 992 molecules and atoms, polar surface area, molecular weight, volume, energy of van der Waals, sigma moments, molar refraction, and hydrogen-bond donor and acceptor abilities of a molecule or an atom. By making selective combinations of these sub-parameters – including also the number of rings, OH groups, and hydrogen atoms attached to nitrogen – we obtained prediction models for the LFER descriptors V, E, S, A, and B with reasonable accuracies, i.e. for a training set of compounds all R2 above 0.934. We validated the models by comparing calculated and experimentally determined LFER descriptors of a test set. Using the complete dataset, the following R2 and SE values were obtained: E (R2 = 0.949, SE = 0.136), S (R2 = 0.940, SE = 0.378), A (R2 = 0.936, SE = 0.148), B (R2 = 0.973, SE = 0.160), J+ (R2 = 0.816, SE = 0.351), and J (R2 = 0.700, SE = 0.291). Furthermore, we demonstrated the applicability of the calculated LFER descriptors by predicting transfers of neutral and ionic compounds from water to propylene carbonate, sulfolane, and ethylene glycol with good accuracy. These results show that physicochemical properties of ionic and neutral compounds can be reliably predicted with identical LFER descriptors even for chemical entities that do not yet exist.

Graphical abstract: In silico prediction of linear free energy relationship descriptors of neutral and ionic compounds

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2015
Accepted
15 Sep 2015
First published
16 Sep 2015

RSC Adv., 2015,5, 80634-80642

In silico prediction of linear free energy relationship descriptors of neutral and ionic compounds

C. Cho, S. Stolte, Y. Yun, I. Krossing and J. Thöming, RSC Adv., 2015, 5, 80634 DOI: 10.1039/C5RA13595H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements