Pd-catalyzed C–N coupling of vinylbromides and sulfonimidamides: a facile synthesis of N’-vinylsulfonimidamides†

Ganesh C. Nandi,ab Sudhakar R. Kota, Prasad B. Wakchaure,c Praveen K. Chinthakindi,a Thavendran Govender,b Hendrick G. Kruger,a Tricia Naicker*a and Per I. Arvidsson*ad

N’-Vinyl sulfonimidamides have been synthesized through a Pd-catalyzed C–N cross coupling between the N’-(imine nitrogen) of N’-deprotected sulfonimidamides and vinyl bromides. The hitherto unreported products were obtained in moderate to excellent yield, and the C–C double bond geometry of the vinylic substrates were retained during the course of reaction. Single crystal X-ray crystallographic analysis confirmed the product structure. Furthermore, we demonstrate that the formed N’-vinyl sulfonimidamides could undergo hydrogenation with Pd–C/H₂ to provide N’-alkyl sulfonimidamides.

Introduction

As part of our ongoing research project on sulfonimidamides and acyl sulfonimidamides as bioisosteres in medicinal chemistry,1 we recently disclosed new synthetic protocols for preparation and modification of this functional group. In our first report,2 we used a Pd-catalyzed Buchwald–Hartwig coupling procedure for the arylation of the N’-(imine nitrogen) of sulfonimidamides. Subsequently, we reported the synthesis of N-acetylated sulfonimidamides via Pd-catalyzed amidocarbonylation of vinyl/aryl halides and triflates.3,4 We have also reported N’-arylation via Cu-mediated Chan–Lam–Evans coupling5 and N-alkynylation through a Cu-catalyzed dual N–H/C–H activation protocol.6 Herein, we explore the Pd-catalyzed C–N coupling of various vinyl bromides to the N’-(imine nitrogen) of unprotected sulfonimidamides.

Although Levchenko et al.,7 reported the synthesis of sulfonimidamides already in 1960, the interest in this functional group has remained low until quite recently. However, during the last decade, attention on this functional group has increased tremendously, both in the area of synthetic methodology and for applications in medicinal chemistry and agrochemistry. Some research groups applied sulfonimidamides as a reagent in organic synthesis, mainly as a ‘N-source for metal-catalyzed nitrene transfer reactions, for inmination of sulfides, aziridination of olefins, and C–H aminations of hydrocarbons.8 Additionally, sulfonimidamides have been used as organocatalysts and as chiral ligands in asymmetric synthesis; more recently they have been used in the iridium-catalyzed asymmetric hydrogenation of cyclic enamides.9 Sulfonimidamide functional groups have also been used as analogues of oncolytic sulfonylureas, sodium channel antagonists, pesticidal agents, and as transition state analogue inhibitors of aspartic acid metalloproteases.6 Even more recently, other groups, in addition to ours, have reported the synthetic methodology for sulfonimidamide functionalization and preparation.7 Given the growing bio- and synthetic importance of sulfonimidamides, we became interested in attempting to prepare N-vinyl sulfonimidamides following the Pd-catalyzed Buchwald–Hartwig C–N coupling procedure. To the best of our knowledge, there is no report on the synthesis of N-vinyl sulfonimidamides through any methodology.

The N-alkenyl functional group represent a very versatile class of olefinic compounds as the electron releasing ability of the nitrogen lone pair strongly polarizes the double bond; thereby offering high levels of reactivity in combination with strong differentiation of the two sp² carbon atoms. In fact, this reactivity of N-alkenyls is the basis for enamine activation in the very fruitful research area of organocatalysis9–11 – another area of interest in our research group. Consequently, N-alkenyl functional groups are widely used as synthetic intermediates in the preparation of heterocycles22 and in asymmetric synthesis of amides and amino acids.23 In addition, N-alkenyl functional groups can be found in many natural products, that include

* Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa. E-mail: Per.Arvidsson@scilifelab.se
ab Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India
b Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, P.O. Box 574, 751 23 Uppsala, Sweden
c Science for Life Laboratory, Drug Discovery & Development Platform & Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
† Electronic supplementary information (ESI) available. CCDC 1049894. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra10939f
anti-anthelmintic chondriamides,14 cytotoxic tripeptide cas-pergillamides,15 protease inhibitors TMC-95-A-D,26 antibiotic CJ-15801,17 anti-inflammatory frangufoline,18 as well as anti-tumor lobatomide A-F,19 salicylihalamide A and related compounds.20

Results and discussion

The starting sulphonimidamides were not commercially accessible, and hence prepared according to literature procedures (Scheme 1).22,23

We commenced our studies with the reaction of sulfonimidamide 1a and 1-(1-bromovinyl)-4-chlorobenzene as model substrates for optimization and the results have been depicted in Table 1. First, we attempted our previously reported reaction condition24 (Table 1, entry 1) for N-arylation of sulfonimidamide [i.e. catalyst Pd(PhCH\textsubscript{2}CH\textsubscript{2}NH\textsubscript{2})(Cl)(RuPhos) and NaO\textsubscript{2}Bu base in THF under MW irradiation at 100 °C]; surprisingly, this did not lead to any detectable N'-vinylated product. Next, we attempted the model reaction with the catalyst Pd\textsubscript{2}(dba)\textsubscript{3} (1 mol%), ligand BINAP (1.5 mol%), base NaO\textsubscript{2}Bu (1.5 equiv.) in toluene at 100 °C for 12 h; gratifyingly, these reaction conditions gave 78% of the expected product with some unreacted starting materials (Table 1, entry 2). A longer reaction time did not improve the yield of the reaction, but performing the reaction at 110 °C provided 92% of isolated product within 4 h (Table 1, entry 3). Pd(OAc)\textsubscript{2} was found to be similarly effective as Pd\textsubscript{2}(dba)\textsubscript{3} and afforded 89% of the product (Table 1, entry 4). Interestingly, under MW irradiation the reaction completed within 1.5 h but provided only 82% of product (Table 1, entry 5). We were also able to demonstrate that the reaction could be performed under another Buchwald’s procedure25 for N'-vinylation, i.e., stoichiometric CuI/N\textsubscript{2}N\textsubscript{2}dimethylethylenediamine (DMEDA) mediation, rather than catalytic Pd-/BINAP conditions, albeit with longer reactions times and lower yield (79%) of product (Table 1, entry 6).

With the optimized reaction conditions (Table 1, entry 3) at hand; we next investigated the substrate scope of this N'-vinylation reaction by varying vinyl halides and sulphonimidamides. Representative results are shown in Chart 1. Various aryl vinylbromides were successfully employed for this transformation. Both unsubstituted- and -Cl/-OMe substituted aryl (trans) vinyl bromides provided the corresponding N'-vinyl sulphonimidamides (3a-c, 3h-j, 3o, p) in good to excellent yields. The phenylvinyl bromide with cis-orientation also gave satisfactory results whilst retaining the double-bond geometry (3e, 3l, 3n). Vinylbromides with heteroaryl groups were equally effective for this transformation (3d, 3k).

Although the cyclic aliphatic vinyl bromide afforded the corresponding product (3g) in moderate yield, both acyclic aliphatic vinyl bromides 2-bromo-1-propene and 1-bromo-1-propene resulted a complex reaction mixture. Even 2-bromo styrene worked well for this transformation and provided very good yields of terminal alkenes (3f, 3m). Modification of the sulphonimidamide moiety was tolerated satisfactorily as shown by replacing the morpholine functionality with piperidine/pyrrolidine to offer the products (3n, 3o) in very good yields.

The structures of all the newly synthesized compounds were deduced from full spectroscopic characterization and unequivocally established by X-ray single crystal diffraction analysis of one representative compound (3c, Fig. 1).22,23

Scheme 1 Synthesis of sulphonimidamides.

Table 1 Optimization of reaction conditions for the N'-vinylation of sulphonimidamides24

<table>
<thead>
<tr>
<th>Entry</th>
<th>Condition</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(PhCH\textsubscript{2}CH\textsubscript{2}NH\textsubscript{2})(Cl)(RuPhos) (3.0 mol%), NaO\textsubscript{2}Bu (1.2 equiv.), THF, 100 °C, MW, 2.5 h</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Pd\textsubscript{2}(dba)\textsubscript{3} (1 mol%), BINAP (1.5 mol%), NaO\textsubscript{2}Bu (1.5 equiv.), toluene, 100 °C, 12 h</td>
<td>78c</td>
</tr>
<tr>
<td>3</td>
<td>Pd\textsubscript{2}(dba)\textsubscript{3} (1 mol%), BINAP (1.5 mol%), NaO\textsubscript{2}Bu (1.5 equiv.), toluene, 110 °C, 4 h</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)\textsubscript{2} (1 mol%), BINAP (1.5 mol%), NaO\textsubscript{2}Bu (1.5 equiv.), toluene, 110 °C, 5 h</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>Pd\textsubscript{2}(dba)\textsubscript{3} (1 mol%), BINAP (1.5 mol%), NaO\textsubscript{2}Bu (1.5 equiv.), toluene, 150 °C, MW, 1.5 h</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>Cu (1.0 equiv.), DMEDA (2.0 equiv.), K\textsubscript{2}CO\textsubscript{3} (2.0 equiv.), toluene, 110 °C, 7 h</td>
<td>79</td>
</tr>
</tbody>
</table>

a Sulphonimidamide and vinyl bromide were used 1.0 equiv. each. b Isolated yield. c Some starting materials were unreacted.
According to a search performed using the Cambridge Structural Database, this structure is the first of its kind to be reported. Comparable sulfonimidamide and sulfonimidate structures displayed a fairly trigonal pyramidal shape with respect to the groups bonded to sulphur atom; bond angles S1–O3–C13 109°/C14,S 1–O3–N1 104°/C14, S1–O3–N2 122° (deviation).

In addition, the X-ray structure of 3c displayed a slightly longer S1–N1 bond length of 1.6 Å as compared to analogous structures that displayed approximately 1.5 Å. The S1–N2 double bond length in the structure of 3c is 1.51 Å, which is also slightly longer than other reported structures (1.4–1.52 Å). Similar to other enamine systems, the C=C bond displays (E)-configuration, and the conformation of the bond between the N'-atom and the C3 is trans-, so that the styryl group points away from the bulky substituents of the sulfone group and the conjugated π-system that includes the N'-atom, the C=C bond, and the phenyl ring, is perfectly planar.

The N'-alkenyl compounds reported here are expected to be very sensitive towards acid. Not too surprising, the N-vinyl sulfonimidamides 3 decomposed to starting sulfonimidamide 4 and aryl acetaldehyde 5 (Scheme 2) when CDCl3 was used as solvent for recording the NMR spectra. Hence, we replaced CDCl3 by CD3CN as solvent for NMR spectroscopic characterization of the products. For authentication, in a separate experiment, sulfonimidamide 4 and phenyl acetaldehyde (1:1) were mixed in CDCl3 in an NMR tube; the resulting NMR spectra matched that obtained from the reaction product 3a in CDCl3, thus independently verifying the decomposition of 3 to 4 and 5 under slightly acidic conditions. To verify the reversibility of the process, sulfonimidamide 4 and phenyl acetaldehyde 5 (1:1) were refluxed in toluene in the presence of catalytic p-toluenesulfonic acid (PTSA); LCMS analysis of the reaction mixture confirmed the formation of 3 albeit in trace amount.

In order to demonstrate the reactivity and utility of the newly prepared N-vinyl sulfonimidamides, we decided to reduce the N'-alkenyl group to the corresponding N'-alkane derivative. An attempt to reduce the double bond following our previously reported BH3-DMS mediated reduction proved unsuccessful. However, for these substrates Pd–C catalyzed hydrogenation provided the expected N'-alkyl sulfonimidamides 6 in good yield (Scheme 3). Under the same conditions, compound 3p gave the corresponding amine 6b through a one-pot reduction of both the olefin and the nitro functionality, thus making an interesting building block for further transformations.

Conclusions

In summary, we have described a Pd-catalyzed C–N coupling reaction of N'-deprotected sulfonimidamides and vinyl bromides for the synthesis of N'-vinyl sulfonimidamides. A variety of α/β-vinyl bromides and cyclic vinyl bromides were successfully coupled to different N'-deprotected sulfonimidamides. The coupling took place with retained stereochemistry around the vinylic double bond. The structure of the N'-vinyl...
sulfonimidamide product was indisputably proven by single crystal X-ray diffraction. In addition, we demonstrated the reactivity of the newly formed N'-alkenyl group through hydrogenation of N'-vinyl sulfonimidamides to N'-allyl sulfonimidamides. The preliminary observation of the dynamic nature of these N'-vinyl sulfonimidamides suggest that they can be used as precursors for many other synthetic transformations and further studies along these lines are currently underway in our laboratory.

4-[Phenyl-N'(4-methoxyphenylvinyl)sulfonimidoyl]morpholine (3c). White solid, Rf = 0.25 (20% ethyl acetate/hexane) mp 110–111 °C. IR (ATR): ν = 2966, 2916, 2855, 1511, 1599, 1252, 1110 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, J = 7.4 Hz, 2H), 7.71 (t, J = 7.2 Hz, 1H), 7.63 (t, J = 7.4 Hz, 2H), 7.32–7.24 (m, 5H), 6.19 (d, J = 13.6 Hz, 1H), 3.65 (t, J = 4.6 Hz, 4H), 2.97–2.89 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 137.9, 135.0, 134.2, 131.3, 130.3, 130.2, 129.4, 128.9, 127.3, 118.0, 66.8, 47.7. HRMS (ESI) calcld for C₁₄H₁₃ClN₂O₅S [M + H]⁺ 363.0928, found 363.0918.

4-[Phenyl-N'(2-thienylvinyl)sulfonimidoyl]morpholine (3d). White solid, Rf = 0.30 (20% ethyl acetate/hexane), mp 134–135 °C. IR (ATR): ν = 2961, 2862, 2840, 1631, 1457, 1275, 1103, 924 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.92 (d, J = 7.4 Hz, 2H), 7.73 (t, J = 7.4 Hz, 1H), 7.65 (t, J = 7.8 Hz, 2H), 7.35–7.33 (m, 1H), 7.24 (d, J = 4.9 Hz, 1H), 7.16 (d, J = 13.6 Hz, 1H), 7.07 (m, 1H), 6.29 (d, J = 17.1 Hz, 1H) 3.67 (t, J = 4.7 Hz, 4H), 3.00–2.90 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 140.7, 135.1, 134.0, 130.1, 129.2, 128.9, 126.9, 125.6, 119.1, 114.4, 66.8, 47.7. HRMS (ESI) calcld for C₁₄H₁₃N₂O₅S [M + H]⁺ 353.0882, found 353.0882.

4-[Phenyl-N'(phenylvinyl)sulfonimidoyl]morpholine (3e). White solid, Rf = 0.30 (15% ethyl acetate/hexane) mp 115–116 °C. IR (ATR): ν = 2966, 2915, 2854, 1621, 1445, 1254, 923 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, J = 7.1 Hz, 2H), 7.84 (d, J = 7.3 Hz, 2H), 7.72 (t, J = 7.4 Hz, 1H), 7.66 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.14 (t, J = 7.3 Hz, 1H), 6.68 (d, J = 8.6 Hz, 1H), 5.65 (d, J = 8.5 Hz, 1H), 3.64–3.62 (m, 4H), 2.97–2.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 138.7, 135.0, 134.2, 130.3, 129.3, 129.0, 128.9, 127.7, 126.4, 115.3, 66.7, 47.6. HRMS (ESI) calcld for C₁₅H₁₄N₂O₅S [M + H]⁺ 329.1318, found 329.1319.

4-[Phenyl-N'(1-phenylvinyl)sulfonimidoyl]morpholine (3f). White solid, Rf = 0.30 (20% ethyl acetate/hexane) mp 98–99 °C. IR (ATR): ν = 3061, 2966, 2915, 2855, 1681, 1596, 1454, 1254, 927 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (d, J = 7.4 Hz, 2H), 7.71 (t, J = 7.2 Hz, 1H), 7.6 (t, J = 7.4 Hz, 2H), 7.63 (d, J = 7.5 Hz, 2H), 7.27–7.24 (m, 3H), 7.12 (t, J = 7.2 Hz, 1H), 6.23 (d, J = 13.6 Hz, 1H), 3.65 (t, J = 4.7 Hz, 4H), 2.95–2.91 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 139.0, 135.1, 134.1, 130.2, 129.3, 128.9, 125.9, 119.4, 66.8, 47.7. HRMS (ESI) calcld for C₁₅H₁₄N₂O₅S [M + H]⁺ 329.1318, found 329.1309.

4-[Phenyl-N'(1-cyclohexenyl)sulfonimidoyl]morpholine (3g). White solid, Rf = 0.25 (20% ethyl acetate/hexane), mp 84–85 °C. IR (ATR): ν = 2918, 2852, 1619, 1443, 1253, 1109 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.83 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.5 Hz, 2H), 5.27 (t, J = 3.8 Hz, 1H), 3.61 (t, J = 4.6 Hz, 4H), 2.89 (t, J = 4.6 Hz, 4H), 2.11–2.09 (m, 2H), 2.19–2.10 (m, 2H), 1.69–1.63 (m, 2H), 1.56–1.50 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 139.3, 136.9, 133.4, 129.9, 128.8, 112.6, 67.0, 47.9, 31.8, 25.6, 24.2, 23.2. HRMS (ESI) calcld for C₁₄H₁₄N₂O₅S [M + H]⁺ 307.1474. Found 307.1460.
4-[S-Tolyl-N′-(phenylvinyl)sulfonylimidoyl]morpholine (3h).
White solid, Rf = 0.30 (15% ethyl acetate/hexane), mp 98–99 °C.
IR (ATR): ν = 2963, 2950, 2814, 1421, 1259, 1105, 920 cm⁻¹. ¹H NMR (400 MHz, CDCl₃); δ = 0.87 (d, J = 8.2 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 1.73 (t, J = 7.3 Hz, 1H), 6.66 (d, J = 8.56 Hz, 1H), 5.63 (d, J = 8.6 Hz, 1H), 3.65–3.62 (m, 4H), 2.93–2.87 (m, 4H), 2.48 (s, 3H).
¹³C NMR (100 MHz, CDCl₃); δ = 145.3, 138.6, 131.9, 130.7, 129.1, 128.9, 128.9, 127.8, 126.3, 115.0, 66.6, 47.5, 21.4. HRMS (ESI) calcd for C₂₀H₂₄N₂O₃S [M + H]+ 343.1474, found 343.1480.

4-[S-Tolyl-N′-(phenylvinyl)sulfonylimidoyl]pyrrolidine (3n).
White solid, Rf = 0.40 (15% ethyl acetate/hexane), mp 85–86 °C.
IR (ATR): ν = 3061, 3026, 2936, 2850, 1525, 1596, 1446, 1248, 914 cm⁻¹. ¹H NMR (400 MHz, CDCl₃); δ = 7.83–7.81 (m, 4H), 7.45 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 8.6 Hz, 1H), 5.58 (d, J = 8.5 Hz, 1H), 2.99–2.88 (m, 4H), 2.44 (s, 3H), 1.59–1.54 (m, 4H), 1.42–1.37 (m, 2H).
¹³C NMR (100 MHz, CDCl₃); δ = 144.8, 138.8, 133.1, 130.6, 129.1, 128.9, 128.7, 128.4, 126.1, 114.3, 48.2, 26.0, 24.1, 21.4. HRMS (ESI) calcd for C₂₀H₂₂N₂O₂S [M + H]+ 341.1682, found 341.1696.

Acknowledgements
This work is based on research supported in part by the National Research Foundation of South Africa (grant number 87706).

23 ESI†

