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Extracting local surface charges and charge
regulation behavior from atomic force
microscopy measurements at heterogeneous
solid-electrolyte interfaces

Cunlu Zhao, Daniel Ebeling, Igor Siretanu, Dirk van den Ende and Frieder Mugele*

We present a method to determine the local surface charge of solid–liquid interfaces from Atomic Force

Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of

protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in

dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-

particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH

5.8. Forces are analyzed in the framework of Derjaguin–Landau–Verwey–Overbeek (DLVO) theory in

combination with a charge regulation boundary that describes adsorption and desorption reactions of

protons and ions. A systematic method to extract the equilibrium constants of these reactions by simul-

taneous least-squared fitting to experimental data for various salt concentrations is developed and is

shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces,

the surface charge can be determined, yet, an unambiguous identification of the relevant surface specia-

tion reactions is not possible, presumably due to a combination of intrinsic chemical complexity and

heterogeneity of the nano-particle surfaces.

1. Introduction

In recent years, high resolution imaging and spectroscopy
techniques in Atomic Force Microscopy (AFM) have generated
unprecedented insights into structure and dissipation in
liquids in the vicinity of solid surfaces. Certain organic liquids
have attracted specific attention because of their model charac-
ter and the simplicity of the dominant molecular interaction
forces (e.g. van der Waals interactions), which gives rise –

amongst others – to very pronounced and characteristic oscil-
latory solvation forces.1–5 Compared to these systems, water
and aqueous electrolytes are much more complex for several
reasons including the strongly dipolar character of water mole-
cules, the role of hydrogen bonding, the hydration of surfaces,
and the almost unavoidable presence of ions.6–12 In addition,
solid surfaces, including AFM tips, typically acquire finite
surface charges upon immersion into water. These surface
charges give rise to rather long range electrostatic forces that

decay exponentially with a decay length ranging from approxi-
mately 1 nm to 100 nm, depending on the salt concentration.
Technically, long range electrostatic forces generate a back-
ground force that is superimposed onto the more short-ranged
chemical forces such as surface and ion hydration forces that
play a crucial role in atomic resolution imaging in aqueous
environment. More importantly, long range electrostatic forces
also provide the physical background field that controls the
adsorption of ions, which has been found to have a strong
effect not only on the average surface charge but also on the
strength of oscillatory hydration forces in water.7,8 A decent
understanding and quantitative characterization of electro-
static interactions is therefore crucial for the interpretation of
high resolution AFM experiments in aqueous environment.

In colloid science, the general principles controlling surface
charge, ion adsorption, and electrostatic interaction forces are
well established. Surface charge and ion adsorption are gene-
rally governed by an equilibrium between desorption and
adsorption of protons and ions from and to specific sites on
the surface.13,14 To first approximation, the binding energies
involved in these processes are governed by short range mole-
cular forces that can be described by the equilibrium constants
K (or their counterpart pK = −log K) of individual adsorption/
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desorption reactions, or so-called speciation reactions. In
addition to the equilibrium constants, the actual fractional
coverage of adsorbed/desorbed species for a given situation
depends on the local concentration of the ions next to the
surface. The latter is proportional to the bulk concentration
but it is modified by the local electrostatic potential at the
surface. Because the latter itself is generated by the surface
charge, determining the equilibrium charge density of solid-
electrolyte interfaces requires a self-consistent solution of both
adsorption/desorption equilibria and the electrostatic poten-
tial distribution in the vicinity of the interface. In the classical
mean field picture, the solution is obtained by coupling the
Poisson–Boltzmann (PB) equation for the distribution of ions
and electrostatic potential in the diffuse part of the electric
double layer to surface speciation reactions of a variable
degree of complexity15,16 for the adsorbed ions in the Stern
part of the electric double layer. Colloidal and AFM force
measurements necessarily involve the presence of two solid-
electrolyte interfaces in close proximity. Electrostatic forces
only arise once the diffuse parts of the double layers overlap.
As a consequence, the electrostatic potential and the local con-
centration of ions that determine surface charge and fractional
coverage of the surfaces change upon varying the distance
between tip and sample. This phenomenon is known as
charge regulation (CR) and was first described in detail by
Ninham and Parsegian.17 Since then, numerous colloidal
surface force measurements using the surface forces apparatus
(SFA)18–21 as well as colloidal probe AFM force measure-
ments22–27 have established that the surface charge typically
changes upon approaching two solid surfaces in an ambient
electrolyte because of the CR behavior. In particular, the group
of Borkovec (see ref. 28 and refs. therein) invested substantial
effort to implement charge regulation models in colloid probe
AFM force microscopy and to quantify the degree of charge
regulation for a wide variety of materials. Because their
primary interest was to describe colloidal interaction forces
and not the specific surface chemistry, they introduced a so-
called constant regulation approach that allows for describing

force distance curves and extracting the net surface charges
without explicitly specifying the individual surface speciation
reactions.

While providing excellent average forces on a mesoscopic
scale, colloidal probe AFM force measurements do not provide
the lateral resolution that is required to characterize hetero-
geneous surfaces nor do they provide a sufficiently well-
defined confinement geometry to help bridging the gap from
the colloidal scale to atomic scale imaging of solid surfaces.
To bridge this gap, we recently extended the principle of
electrostatic surface characterization from colloidal science to
dynamic AFM measurements with sharp cantilever tips and
corresponding high lateral resolution of the order of the tip
radius (several tens of nanometers).12,29 Experiments with
solutions of chloride salts of Na, K, Ca, and Mg demonstrated
that the surface charge of silica and gibbsite surfaces strongly
depends on the concentration and valency of the cations.
Local surface charge density was extracted based on the
asymptotic forces measured at distances much larger than the
Debye screening length using solutions of the Poisson–Boltz-
mann equation under the classical constant charge (CC) or
constant potential (CP) boundary condition. In that range,
however, the measured forces are inherently small, which
limits the accuracy of the measured charge densities. At
smaller tip-sample separations, measured forces were found to
fall in between the classical CC and CP solutions of the PB
equation, indicating the occurrence of charge regulation. In
the present work, we implement a data analysis procedure that
includes charge regulation to the force measurements pre-
sented in ref. 12. Fig. 1(a) presents a typical silica/gibbsite
composite sample and the corresponding measured forces for
10 mM NaCl solution at pH 5.8. The novelty of our approach is
thus twofold: (i) we demonstrate the applicability and signifi-
cancy of the charge regulation concept for AFM measurements
with sharp tips and correspondingly high lateral resolution.
(ii) We go beyond the common constant regulation
approach30,31 and extract directly equilibrium constants of
surface speciation reactions using the full non-linear Poisson–

Fig. 1 (a) 3D view of a gibbsite nanoparticle adsorbed onto a silica surface along with force-vs.-distance curves (color coded) along a line section
through the particle. Repulsive forces (red) upon approaching the silica surface indicate negative surface charge and attractive forces (blue) on the
gibbsite particle indicate positive surface charge. Data are acquired with a negatively charged oxidized silicon tip in 10 mM NaCl solution at pH ≈
5.8. Data adapted from ref. 12. (b) Schematic of the sample system (dimensions not to scale) consisting of a gibbsite platelet immobilized on a silica
substrate. The magnification of the tip apex in the right part of the figure gives a more detailed view of the used tip geometry which is modeled as a
truncated cone with a flat end having radius of R ≈ 30 nm.
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Boltzmann equation and charge regulation boundary con-
dition. We discuss the applicability and reliability of our
approach for common silica-electrolyte and for less common
gibbsite-electrolyte interfaces.

The manuscript is organized as follows. In section 2, we
recapitulate the general charge regulation scheme of coupling
the PB description of the ion distribution in the diffuse layer
to the surface complexation reactions and discuss specific
aspects of its implementation for symmetric and asymmetric
material combinations of tip and sample. In section 3, we
describe the specific data analysis procedure, which involves
the simultaneous optimization of parameters by a least-
squared fitting of the charge regulation model to the experi-
mental data obtained for variable fluid compositions. We
identify well-defined equilibrium constants for deprotonation
and cation adsorption reactions on silica. In section 4 we
discuss the consequences of our results for AFM measure-
ments in aqueous electrolytes in general. In particular,
we extrapolate our results for silica to a wider range of
fluid compositions and discuss possible limitations of the
mean field approach inherent to our PB description of the
electrolyte.

2 Theoretical framework
2.1 DLVO theory

Tip-sample interaction forces are analyzed in the framework of
DLVO theory. In DLVO theory the disjoining pressure between
two adjacent surfaces at distance D is decomposed into contri-
butions from van der Waals interaction ΠvdW and electrostatic
double layer forces Πel.

ΠðDÞ ¼ ΠvdW þ Πel ð1Þ
Additional contributions to the disjoining pressure due to

short range interactions such as hydration forces only become
important at tip-sample separations of ≲1–2 nm. In the
present analysis, we disregard these contributions. This
implies that our model will only be applicable for tip sample
separations beyond 1–2 nm.

Once the disjoining pressure is known, the force on the tip
is calculated by integrating Π over the tip surface. For spherical
probes as in colloidal probe AFM this is typically done using
the Derjaguin approximation (see e.g. ref. 32). In our experi-
ments, the AFM tips are slightly flattened leading to a local
parallel plate geometry with a rather small contribution from
the adjacent cone,12,29 as sketched in Fig. 1(b). We therefore
approximate the total force by

FðDÞ ¼ πR 2ΠðDÞ ð2Þ
We estimate the absolute uncertainty of the procedure to be

of order 10%.29 Relative trends and the dependence of the
force on the fluid composition, however, are not affected by
these geometric uncertainties.

van der Waals forces. The contribution due to van der
Waals forces is straight forward to analyze, because it can be

written as an explicit function of D. Ignoring retardation
effects, we can write for two parallel interfaces

ΠvdWðDÞ ¼ � A
6πD3 ð3Þ

where A is the Hamaker constant.
Electric double layer forces. The electrostatic contribution is

the more interesting one because it contains the information
on the surface chemistry that we are interested in. Yet, this
information is contained in the expression for the electrostatic
disjoining pressure only in a rather indirect fashion. Formally,
we can write Πel as

ΠelðDÞ ¼ kBT
X
i

ðciðzÞ � ci1Þ � εε0
2

dψ
dz

� �2

: ð4Þ

Πel consists of a first contribution due to osmotic repul-
sion caused by local variations of the ion concentration and
a second one due to direct electrostatic attraction (Maxwell
stress). Here kB is the Boltzmann constant, T is temperature,
εε0 the dielectric permittivity of water. In the first term, the
sum runs over all ionic species i in the system. ci∞ is the
bulk number concentration of corresponding ions. The solu-
tion of eqn (4) depends on the unknown functions ci(z) and
ψ(z), i.e., the concentration profiles of all ionic species and
electrostatic potential in the electrolyte at an arbitrary posi-
tion ds < z < D − ds between the two solid surfaces, where
ds is the thickness of the Stern layer. Making use of the fact
that the ions follow the Boltzmann distribution, i.e. ci(z) =
ci∞ exp(−Zieψ(z)/kBT ), we can calculate the potential distri-
bution ψ(z) by numerically solving the Poisson–Boltzmann
(PB) equation

d2

dz2
ψðzÞ ¼ � e

εε0

X
i

Zici1 exp � ZieψðzÞ
kBT

� �
ð5Þ

between the substrate surface and the tip using a standard
Runge–Kutta algorithm. e represents the elementary charge,
and Zi is the valency of corresponding ions. Eqn (4) and (5)
imply that the Πel depends directly only on the field distri-
bution and ion distribution in the diffuse part of the double
layer. The surface chemistry that we are actually interested in
enters the problem only via boundary conditions of eqn (5),
which are determined by σI and σII, the net surface charge
densities of tip and sample. Alternatively, the potentials ψ(ds)
and ψ(D − ds) that are related to the surface charges via
Gauss’ law can be specified to solve eqn (5). Once ψ(z) is
known as a function of ψ(ds) and ψ(D − ds), we calculate
the total charge in the diffuse layer, σd, by evaluating the
integral

σdðψðdsÞ; ψðD� dsÞÞ ¼
ðD�ds

ds

e
εε0

X
i

Zici1 exp
ZieψðzÞ
kBT

� �
dz ð6Þ

However, ψ(ds) and ψ(D − ds) (or equivalently σI and σII) are
not known a priori and need to be determined self-
consistently as part of the solution procedure. For an electric
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double layer at a single solid electrolyte interface this equation
reduces to Grahame’s equation14 that relates the total diffuse
layer charge density and the potential drop in a double layer.

2.2 Surface charge and charge regulation

As discussed above, the surface charge is controlled by
adsorption and desorption equilibrium of protons and salt
ions from the solution at the interface. We first recapitulate
the problem for a single surface reaction (i.e. deprotonation)
at the interface following the scheme originally described by
Ninham and Parsegian17 to explain the coupling between
surface chemistry and diffuse layer physics using the so-
called Gouy–Chapman model of double layer. Subsequently,
we generalize this scheme to the actual situation of our
experiments that involves several surface reactions including
the adsorption of salt ions and the formation of a Stern
layer.

Single deprotonation reaction. We consider a surface site
SH that can deprotonate to produce a negatively charged site
S− following the simple chemical reaction

S� þHþ Ð SH ð7Þ
The reaction is characterized by an equilibrium constant

K1H with a corresponding pK value pK1H = −log K1H. For the
silica surfaces to be described below, SH would be simply a
silanol group SiOH. The location of the equilibrium of the
chemical reaction eqn (7) follows the law of mass action

fS�g½Hþ�0 ¼ K1HfSHg ð8Þ
where curly brackets, { }, indicate surface concentrations and
square brackets, [ ], indicate volume concentrations. [H+]0 is
the local proton concentration at the S sites, i.e. directly at the
surface. The total Γ density of surface sites S is fixed by the
geometry and chemistry of the surface, leading to a conserva-
tion law

fS�g þ fSHg ¼ Γ ð9Þ
Eqn (8) and (9) form a set of linear equations for the

surface concentration {S−} and {SH} that we can formally
rewrite as a matrix equation

1 1
½Hþ�0 �K1H

� � fS�g
fSHg

� �
¼ Γ

0

� �
ð10Þ

which can be solved for {S−} and {SH}. Physically, this
approach is equivalent to treating the protons adsorbed to the
fixed density of surfaces site S as a lattice gas of non-interact-
ing particles with a chemical potential μs. This potential is
equal to the chemical potential of a reservoir with a concen-
tration [H+]0. The gain in chemical potential upon adsorption
is Δμ0 = kBT ln K1H/[H

+]∞.
33

The above procedure results in a surface charge density that
is given by

σ0 ¼
X
i

qifXig ð11Þ

where qi = eZi is the charge of the surface group of species Xi.
With eqn (7) as the only chemical reaction, eqn (11) thus
reduces to

σ0 ¼ �efS�g ¼ � eΓ

1þ ½Hþ�0
K1H

: ð12Þ

Eqn (12) provides the surface charge as a function of the
local proton concentration [H+]0 at the surface. [H+]0 deviates
from the bulk concentration [H+]∞ (which is fixed by the pH =
−log[H+]∞ of the solution) because of the unknown electro-
static potential on the surface, ψ0. [H

+]0 is assumed to follow a
Boltzmann distribution

½Hþ�0 ¼ ½Hþ�1e�eψ0=kBT ð13Þ

Together, eqn (12) and (13) lead to an expression σ0 =
σ0(ψ0), i.e. an equation that connects the potential at the
surface to the surface charge via the surface chemistry. This
relation is the counterpart of eqn (6), which expresses the
charge in the diffuse layer as a function of the potential at the
surface. Together they assure charge neutrality, i.e. the charge
on the surfaces of tip and sample have to be compensated by
the charge in the diffuse layer.

σ Iðψ0
IÞ þ σ IIðψ0

IIÞ þ σdðψðdsÞ;ψðD� dsÞÞ ¼ 0 ð14Þ

For the simple case of a symmetric system with tip and
surface both made of the same material (e.g. silica in our
experiments), we can write down the same potential-charge
relations, eqn (12), for both surfaces. Using the simple
Gouy–Chapman model of the electric double layer, we
assume that the ionizable groups are located directly at the
surface and that the Poisson–Boltzmann description of the
diffuse layer extends all the way to surface. Hence, we ident-
ify ψ0

I = ψ(0) and ψ0
II = ψ(D). (In this case there is no Stern

layer, so ds = 0.) Solving eqn (14) we thus obtain the self-
consistent distribution of the electrostatic potential, the salt
ions in the solution and the ad/desorption of protons on
the surface. The results are inserted into eqn (4) and (2) to
calculate the total force, which is then expressed as a func-
tion of the parameters that characterize the charging reac-
tion of the surface, i.e. the site density Γ and the
equilibrium constant K1H. Because Γ is usually fixed by the
crystallography of the surface, K1H is the parameter of
primary interest that is determined by fitting to the experi-
mental data.

Adsorption of several ions and Stern layer formation. The
approach described above can be readily generalized to situ-
ations with several surface reactions, such as the adsorption of
a cation of valency Zc to a deprotonated surface site S−

S� þ Czcþ Ð S�Czcþ ð15Þ

with an equilibrium constant KC. Additional possible reactions
include for instance the adsorption of a proton (viz., protona-
tion), and additional anion and cation adsorption reactions to
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either charged or uncharged sites, each accompanied by its
own equilibrium constant.

SHþHþ Ð SHþ
2 with K2H

SHþ
2 þ Aza� Ð SHþ

2 A
za� with KA

SHþ Czcþ Ð SHCzcþ with KHC

SHþ Aza� Ð SHAza� with KHA

� � �

ð16Þ

If lateral interactions between adsorbed species are
ignored, as usual in first order approximations, the location of
the chemical equilibria is determined for each ionic species
separately by a law of mass action using the relevant local con-
centration of the respective ion in the electrolyte.

While ions are treated as point-like in the Poisson–Boltz-
mann description of the diffuse layer, their finite size is
usually taken into account when considering the position of
the adsorbed ions in the Stern layer. Fig. 2 illustrates the Stern
models of electric double layer for both surfaces considered in
current study. Sophisticated implementations of this idea
involve several planes away from the actual surface. Here we
consider two planes the “0” plane and the “s” plane, which
divides the double layer into a Stern layer and the diffuse layer.
The (de-) protonation reaction takes place at the “0” plane,
while electrolyte ions are adsorbed at the “s” plane.

This approach results in a generalization of the matrix
eqn (10)

1 1 1 . . .
½Hþ�0 �K1H 0 . . .
½Czcþ�s 0 �KC . . .
. . . . . . . . . . . .

0
BB@

1
CCA

fS�g
fSHg

fS�Czcþg
. . .

0
B@

1
CA ¼

Γ
0
0
. . .

0
B@

1
CA

ð17Þ

where the triple dots indicate additional possible surface reac-
tions. Similarly, identifying all possible charged complexes on

the surface results in a generalization of eqn (11). Finally,
solving the linear matrix eqn (17) leads to a generalized form
of eqn (12). To evaluate that expression, the local concen-
trations of each ion at its specific adsorption plane must be
calculated using the Boltzmann distribution with the local
electrostatic potential at that plane.15

2.3 Specific implementation

Silica surfaces in contact with NaCl and KCl solutions. In
general, the correct identification of the relevant surface reac-
tions in systems involving several components is rather chal-
lenging and – given the indirectness of force and electrokinetic
measurements – involves substantial uncertainties. Silica in
contact with aqueous solutions of NaCl or KCl of moderate
concentration is an ideal model system, arguably the best
characterized one in the literature. In this case, we can restrict
the reactions to the deprotonation of silanol groups, eqn (7)
with SiOH as SH and SiO− as S− sites, and the adsorption of a
single monovalent cation species, see eqn (15), SiO−Na+ or
SiO−K+ as S−C+. So, we consider only the 3 × 3 matrix equation
explicitly written in eqn (17). With reference to the double
layer structure of silica shown in Fig. 2(a), SiOH and SiO− sites
are located in the “0” plane, and cations are adsorbed at the
“s” plane. The charge densities at the “0” and the “s” planes
are then given by

σ0 ¼ �eðΓ � fSiOHgÞ ¼ �efSiO�g � efSiO�Cþg ð18Þ

σs ¼ efSiO�Cþg ð19Þ
Because the space charge density between the “0” plane

and the “s” plane vanishes, the potential drop in the Stern
layer is linear and can be expressed as

ψ0 � ψs ¼
σ0
Cs

ð20Þ

where Cs is the capacitance of the Stern layer.
Together, σ0 and σs define the net or ‘effective’ charge of

each surface in the AFM experiments, i.e. we can write σI = σ0
I

+ σs
I for the tip and σII = σ0

II + σs
II, respectively. These two

expressions are inserted in eqn (14) to obtain the solution.
Because the charge in the diffuse layer compensates the net
charges σI and σII and the Poisson–Boltzmann equation is only
applied between the s planes of the two surfaces, we identify
ψ(ds) = ψs

I and ψ(D − ds) = ψs
II in eqn (14) in the presence of a

Stern layer with adsorbed ions. If tip and sample are of the
same material (e.g., AFM silica tip over silica substrate), we use
the additional simplification σI = σII and ψ(ds) = ψ(D − ds). The
specific chemical reactions and parameter values required for
the data analysis are summarized in Table 1.

Gibbsite surfaces in contact with NaCl and KCl solutions.
While the surface complexation on silica surfaces as described
above is well established and widely accepted, the origin of the
surface charge on the basal plane of gibbsite is less clear. The
basal plane of gibbsite has only a doubly coordinated surface
group, Al2OH. Crystallographically, there are six different
Al2OH groups per surface unit cell of gibbsite. The classic mul-

Fig. 2 Schematic of the basic Stern layer model of electric double layer
on (a) silica and on (b) gibbsite. Protonated and deprotonated silanol
and aluminol groups are located at the “0” plane. Adsorbed cations (Na+,
K+) on silica and Cl− anions on gibbsite from the solution are located at
the “s” plane to neutralize partially the deprotonated silanol and proto-
nated doubly coordinated aluminol sites. The region between “0”and “s”
planes is the so-called Stern layer, and potential drop inside it is linear
because it does not contain any space charge. Beyond the “s” plane is
the diffuse part of electric double layer, and potential drop is exponen-
tial because of non-zero space charge density in the diffuse layer.
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tisite complexation (MUSIC) method33–35 treats all of them the
same and predicts that these surface groups are electrically
neutral in the pH range of 4 to 10. Bickmore et al.36 treated all
OH groups individually in an advanced model that incorpo-
rates the bond-valence theory and reveals the molecular struc-
ture of the surface ab initio. According to those calculations
one of the Al2OH groups per surface unit cell can be proto-
nated with a pK value around 5. Jodin et al.37 considered the
possibility of surface relaxation (e.g., the bending of the
Al–O–H angle) in their bond-valence MUSIC calculations, and
yielded the pK value for protonation of the basal doubly co-
ordinated surface group in the range of 2 to 4. The latter two
calculations concur with some experiments38–40 about the
reactivity of doubly coordinated groups. Based on these
studies, we tentatively describe our data on gibbsite by the fol-
lowing surface speciation reactions.

Al2OH2
þ (+ Al2OHþHþ with K2H ð21Þ

Al2OH2
þCl�(+ Al2OH2

þ þ Cl� with KA ð22Þ

The charge densities at the “0” and “s” planes are then
given by

σ0 ¼ efAl2OH2
þg þ efAl2OH2

þCl�g ð23Þ

σs ¼ �efAl2OH2
þCl�g ð24Þ

The structure of the electric double layer near gibbsite is
sketched in Fig. 2(b). Because the charge density between the
“0” plane and the “s” plane vanishes, the electrostatic poten-
tial ψs at the “s” plane can be calculated again from the poten-
tial and charge density at “0” plane using eqn (20).

For the calculation of the charge distribution and the
forces, we now use the σI = σ0

I + σs
I for the silica tip as obtained

in the preceding section and combine it with σII = σ0
II + σs

II for
the gibbsite surface. The characterization of the surface charge
and surface chemistry of the AFM tip, first using a silica sub-
strate, is thus a necessary prerequisite to characterize the sub-
strate of interest.

3 Results and discussion
3.1 Least-squared fitting

The force vs. distance curves calculated using the theoretical
model depend on a number of parameters, including the
radius of the AFM tip R, the Hamaker constant A, the site
density Γ, the capacitance of the Stern layer Cs, and the equili-
brium constants Ki of the surface speciation reactions con-
sidered. The last are the primary parameters of interest here.
Therefore, we use reasonable estimates for the former ones
based on tip calibration measurements and literature values as
described in Table 1. Only the equilibrium constants Ki are
used as free parameters to optimize the agreement between
experimental data and calculated model curves. We define a
merit function

QðK1;K2; . . .Þ ¼ 1
PN
j¼1

ðFtðDjÞ � FexpðDjÞÞ2
ð25Þ

where Ft and Fexp denote the theoretically calculated and
the experimentally measured force value at the distance Dj.
Best fit values for the fit parameters are calculated by maximiz-
ing Q within a reasonably chosen range of values for the Ki’s
(or the corresponding pKi’s) under consideration. Such ranges
are chosen based on literature data and refined manually in
the course of the fitting procedure. To increase the speed of
the optimization procedure, we evaluate Ft(D) on a reduced
number of points, N = 15, chosen equidistantly within the
range 2 < D < 15 nm and determined Ft(Dj) by interpolating
between the adjacent Ft(D) values. Empirical tests showed that
the use of a larger number of evaluation points had no signifi-
cant effect on the fit quality and the resulting optimum para-
meter values, while significantly reducing the speed of the fit
process because the optimization involves the solution of the
non-linear Poisson–Boltzmann equation at each distance. The
minimum separation of 2 nm was chosen to minimize the
influence of short range forces such as hydration forces that
are not included in the physical model. The maximum value
of 15 nm is based on the rapid decay and the dominance of
noise beyond that distance for the conditions of the present
set of experimental data.

Table 1 Parameters of used in force analysis based on the CR-complemented DLVO theory. Note: the pK values of surface reactions are optimized
to fit the experiments, while other parameters are measured or kept to literature values

Surfaces

Parameters Silica Gibbsite basal plane

“0” plane reaction SiOH ⇌ SiO− + H+ with pK1H Al2OH2
+ ⇌ Al2OH + H+ with pK2H

“s” plane reaction SiO−Czc+ ⇌ SiO− + Czc+ with pKC Al2OH2
+Aza− ⇌ Al2OH2

+ + Aza− with pKA
Stern layer capacitance Cs 2.9 F m−2 (ref. 59) 1.49 F m−2 (ref. 38)
Site density of surface group Γ 8 nm−2 (ref. 59) 13.8 nm−2 (ref. 38 and 59)
Hamaker constant A 0.65 × 10−20 J (ref. 26 and 29) 1.2 × 10−20 J (ref. 29 and 39)
Stern layer thickness ds 0.4 nm (ref. 35 and 60)
AFM Tip diameter 2R 52 ± 5 nm (SEM measurement)
pH of solution 5.8 (measurement)
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3.2 Surface charge and optimization of pK values

Very good fits of individual force curves are easily obtained
upon optimizing the merit function Q for each individual fluid
composition both on silica and on gibbsite surfaces (Fig. 3).
For data acquired on silica, the deviation between model curve
and experimental data can be reduced below the symbol size
in Fig. 3 for the entire parameter range of interest, i.e. for 2 <
D < 15 nm. The optimized model curves that include the CR
boundary condition (solid lines in Fig. 3) describe the experi-
mental data of a significantly wider range than the approxi-
mate solutions for constant potential (CP) and constant charge
(CC) solutions (dashed lines in Fig. 3). For gibbsite, the
description of the data by the CR solution is also much better
than for the CC and CP solutions. Yet, the quality is not quite
as good as in the case of silica and deviations are seen already
at tip sample separations of ≈2 nm.

The fit curves shown in Fig. 3 result from a simultaneous
global optimization of the data for all salt concentrations. If
optimized individually for each concentration, much better
fits than shown in the figure can be obtained. Yet, such an
approach would be inconsistent with our modeling that
assumes concentration-independent equilibrium constants for
each reaction. However, it turns out that good agreement
between model curve and experimental data for any single salt
concentration is not sufficient to determine a unique set of

equilibrium constants. Rather, a whole range of combinations
of fit parameters provides fits of similar quality. Fig. 4(a) illus-
trates this observation for a specific data set, where deprotona-
tion of the silanol group and adsorption of Na+ ions were
taken into account in the modeling. This representation of the
merit function Q clearly demonstrates that the optimum
values of pK1H and pKNa are highly correlated. Fits of equally
excellent quality can be obtained for the wide range of para-
meters shown by the narrow ridge forming the maximum of
Q(pK1H, pKNa). These results clearly show that a reliable
measurement of pK values based on force curves for a single
fluid composition is impossible when several surface reactions
occur simultaneously.

In fact, this result does not come as a surprise. As the
theoretical analysis described in the preceding section
showed, the electrostatic part of the disjoining pressure, eqn
(4), experienced by the AFM tip depends on the surface chem-
istry only via the boundary conditions, ψ(ds) and ψ(D − ds) or
via the corresponding charge density of the diffuse layer, i.e.
via the global charge neutrality condition, eqn (14). Any combi-
nation of surface chemical reactions with adequate fractional
adsorption that generates the same surface charge gives rise to
the same force in the AFM measurement and can thus not be
distinguished, as shown in Fig. 4(b). For the present situation,
deprotonation and adsorption of monovalent Na+ (or K+)
cations give rise to the same surface charge density and thus

Fig. 3 A comparison of experimental tip-sample force curves (taken from ref. 12) with theoretical force curves for the silica-silica (coded in red)
and silica-gibbsite(coded in blue) interaction in aqueous solutions of two monovalent salts (NaCl: first row, KCl: second row) under three different
concentrations (1 mM: left column, 10 mM: middle column and 100 mM: right column). Symbols: laterally averaged AFM forces; solid lines: force
prediction using charge regulation (CR) with globally optimized pK values (see Fig. 5); dashed lines: constant charge (CC) and constant potential (CP)
force predictions.
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to the same force. The small difference arising from the
different locations in the “0” plane and in the “s” plane is
apparently insufficient to create a significant difference in the
forces. Specifically, Fig. 4a shows that the experimental data
can be explained by assuming exclusively (de-) protonation
with a value of pK1H ≈ 7.05 with negligible Na+ adsorption
with arbitrary pKNa < 0.5. If pKNa is assumed to be larger than
0.5, pK1H has to be decreased slightly to compensate for the
weak adsorption of Na+.

Similar results are obtained for other concentrations and
for KCl, both on silica and on gibbsite surfaces (data not
shown). For each combination of materials, the correlation
curves on silica have the same qualitative shape. A differently
shaped family of correlation curves is obtained on gibbsite.
Yet, the exact location of the curves in the parameter space
depends on the salt concentration: for higher salt concen-
trations the contribution of adsorbing Na cations is more pro-
nounced, for lower salt concentrations the effect of
deprotonation is dominant. The fact that the exact location of
the correlation curves depends on the salt concentration is a
direct indication that the adsorption of Na+ ions does indeed
contribute to the surface charge on silica. Because the surface
chemistry should be same for all conditions, we can further
constrain the equilibrium constants by requiring that one con-
sistent set of pK values – pK1H and pKC for silica, and pK2H

and pKA for gibbsite – should be obtained by simultaneous
optimization of Q for all salt concentrations investigated.
Fig. 5 shows the merit function Qall for both silica and gibbsite
surfaces determined from all the concentrations in the range
of 1 mM to 100 mM (i.e., 1, 3, 10, 30, 100 mM). Forces
obtained at the lowest (0.5 mM) salt concentration were

excluded from the analysis because the measured forces were
overall too low for reliable fitting within the distance range of
interest.

Fig. 5a shows the merit function for a superposition of data
acquired for the silica surface at different NaCl concentrations.
Indeed, it yields a well-defined combination pK1H = 6.9 ± 0.3
and pKNa = 1.65 ± 0.1 for which the model curves simul-
taneously describe all experimental force curves. From the
measurements with KCl solutions the corresponding optimum
values are pK1H = 6.9 ± 0.3 and pKK = 2.0 ± 0.2, as shown in
Fig. 5b. Note that the value for pK1H obtained for the two
different salts coincides as one should expect. The deprotona-
tion of silanol groups is one of the most widely studied surface
reactions in the literature and the reported pK1H values
(obtained with potentiometric titration) typically fall in the
range 7 to 7.5.33,41–44 Our result includes the lower part of this
range. The exact values are known to depend on the origin and
the specific preparation conditions of the silica surfaces. For
instance, the surface chemistry of our oxidized surfaces of
bulk silicon both on the tip and on the sample surface is
expected to differ from bulk amorphous silica such as the one
precipitated from silanes in a Stöber reaction that is frequently
used in colloidal studies of silica. In addition, we note that
deviations of the order of 0.5 pK units may also result from
uncertainties in other experimental parameters such as the
exact geometry and radius of the AFM tip and physical
assumptions related to the Poisson–Boltzmann mean field
approach.

Comparison between NaCl and KCl solutions shows a
somewhat stronger adsorption for K+ than for Na+ ions on
silica. This difference, which was already visible in our

Fig. 4 Correlation of fit parameters pK1H and pKC on silica surface for a single salt concentration (10 mM NaCl). (a) Contour plot of the fit quality
merit function Q (inverse of squared error). (b) Contour plot of net surface charge, σ0 + σs = −σd, in the limit D → ∞, which illustrates that the quantity
probed by the AFM experiment is the diffuse layer charge. Any pK pairs, (pK1H, pKC), falling on the cyan thick solid line produce a same diffuse layer
charge density of −0.068e/nm2, and thus a same force.
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approximate analysis of the data based on the constant charge
model,12 is consistent with earlier reports in the literature
based on SFA,21 colloidal probe AFM,26 and electrokinetic
measurements.45 It is consistent with the idea that the slightly
larger K+ ions are more polarizable than Na+ and hence experi-
ence a somewhat stronger dispersion attraction towards the
surface.46 Simultaneously, the hydration shell of K+ is some-
what less strongly bound. This may lead to somewhat weaker
hydration repulsion between the hydrated ion and the
hydrated silica surface.

Similar results can be obtained for gibbsite surfaces. From
the plots, we extract optimum values of pK2H = 5.4 ± 0.3 and
pKCl = 1.4 ± 0.6 for the measurements with NaCl (Fig. 5c) and

pK2H = 4.6 ± 0.2 and pKCl < 0.7 for the measurements with KCl
(Fig. 5d). The quality of the analysis for gibbsite is less satisfy-
ing than in the case of silica discussed above. First, the
maximum value of Qall for the optimum combination of pK
values is more than an order of magnitude lower, showing that
the quality of the fits is not as good as for silica. Second, if the
surface speciation reactions, eqn (21) and (22), chosen to
model the data are correct, the values of pK2H and pKCl should
actually be the same for both NaCl and KCl solutions. The ana-
lysis shows that this is not quite the case. Given the fact that
the experimental data are obtained in the course of the same
measurement as the very satisfying results on silica, we con-
clude that the quality of the experimental data as such cannot

Fig. 5 Contour of the inverse of squared error (Qall) in the parameter space defined by pK values of surface reactions. (a) Qall in parameter space
(pK1H, pKC) for silica in NaCl solution. (b) Qall in parameter space (pK1H, pKC) for silica in KCl solution. (c) Qall in parameter space (pK2H, pKA) for gibb-
site in NaCl solution. (d) Qall in parameter space (pK2H, pKA) for gibbsite in KCl solution. For silica surface, local maxima in (a) and (b) provide best
estimates of pK1H = 6.9 ± 0.3, pKNa = 1.65 ± 0.1, pKK = 2.0 ± 0.2. For gibbsite surface, local maxima in (c) and (d) provide best estimates of pK2H = 5.4
± 0.3/pKCl = 1.4 ± 0.6 for NaCl and pK2H = 4.6 ± 0.2/pKCl < 0.7 for KCl, respectively.
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be the cause of these deviations. This suggests that the specific
surface speciation model chosen to describe the data is not
appropriate. In fact, we tested a few other possibilities of
surface complexation, such as the last two reactions given in
eqn (16). None of them yielded more consistent results than
the reactions chosen here. Possibly, the actual surface chem-
istry is in fact much more complex and requires, e.g. the invol-
vement of hydration water. The latter was found to be
necessary to understand the adsorption of divalent Mg2+ and
Ca2+ cations onto the same surface, as atomically resolved
images of these ions on gibbsite in combination with extensive
density functional theory (DFT) calculations showed.12 For
those ions, the DFT calculations suggested that six partially
deprotonated molecules of hydration water play a crucial role
for the observed effective surface charge. For monovalent
cations of Na+ and K+, the same type of calculation did not
reveal a comparable ordered arrangement of adsorbed ions.
Yet, it is clear, also from molecular dynamics simulations,11,47

that rather complex configurations of cations and water mole-
cules can appear at clay-electrolyte interfaces that may be too
complex to be captured by a few simple surface complexation
reactions as eqn (21) and (22). Moreover, the observed hetero-
geneity of the force curves on the gibbsite particles points to
an intrinsic heterogeneity of the surface charge of the particles
that might be caused by intrinsic structural and/or chemical
defects on the surface. In this context it is worth noting that
the absolute value of the surface charge densities in the
present experiments is rather low in all cases, typically of the
order of 0.1e/nm2 (see Fig. 6). For a typical tip-sample inter-
action area of the order of 500 nm2, this means that the tip
typically probes no more than a few tens of charges on each
surface. Surface defects carrying – say – 10 elementary charges
therefore already produce substantial deviations that under-
mine the idealized approach of the surface speciation reac-

tions discussed in section 2.3. These considerations also
highlight the remarkable degree of homogeneity of the silica
surfaces.

4 Discussion
4.1 Surface charge density

Fig. 6 shows the effective surface charge density σ0 + σs of
silica and gibbsite in both NaCl and KCl solutions as calcu-
lated based on the surface speciation reactions with optimized
pK values for individual solid-electrolyte interfaces, i.e.
extrapolated to infinite tip-sample separation. On both sur-
faces, the absolute value of the surface charge density is found
to increase with increasing salt concentration. This is due to
the fact that increased concentration improves the electrostatic
screening and thereby reduces the cost in free energy involved
in the creation of surface charge.

Next to the solid and dashed lines representing the results
with current charge regulation model, the graph also shows as
symbols the results from approximate analysis of the tails of
the force–distance curves with constant charge/constant poten-
tial model reported earlier in ref. 12. The earlier data display
the same trends as the present more sophisticated analysis,
yet, that analysis clearly underestimated the absolute values of
the charge density. Considering the fact that the charge regu-
lation model produces much better fits of the experimental
force curves than the constant charge/constant potential
model (see Fig. 3) does, it is thus reasonable to believe that the
surface charge extracted from charge regulation model is
indeed more reliable.

Note that the surface charge densities obtained for gibbsite
should be trusted notwithstanding the uncertainties discussed
in the preceding section. As our discussion of Fig. 4 showed,
good fits of the force curves imply a correct measurements of
the surface charge density. Yet, they do not guarantee the
correct identification of the surface chemistry. For the rest of
the discussion, we will focus on silica surfaces and explore the
consequences of the specific surface speciation reactions that
we can trust.

4.2 Charge regulation and local fluid composition

Using the optimized combination of pK values, we can analyze
the composition of the fluid and the coverage of specific
species on the silica surface as a function of the tip-sample
separation. Fig. 7 summarizes some in general terms well-
known (see e.g. ref. 14) basic results for the distribution of
protons that arises from the self-consistently determined
potential ψ(z) using the Boltzmann distribution. If the separ-
ation of tip and sample is large compared to the Debye length,
the system displays a typical behavior of the so-called thin
double layer limit. The surface charges are screened in a
diffuse layer extending a distance of the order of the Debye
screening length. In the middle of the gap, the electrolyte has
its bulk composition. Under these reference conditions,
charge regulation has no effect, as shown by the overlapping

Fig. 6 The unregulated (no interaction between two surface, i.e., D →
∞) diffuse layer charge density, σ0 + σs, as a function of electrolyte con-
centration for two monovalent electrolytes used in the current study.
For comparison purposes, the results determined from CC/CP bound-
aries in ref. 12 is also included in the plot.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2015 Nanoscale, 2015, 7, 16298–16311 | 16307

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Se

pt
em

be
r 

20
15

. D
ow

nl
oa

de
d 

on
 9

/2
5/

20
24

 5
:5

5:
39

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5nr05261k


blue curves on the top of Fig. 7. For tip-sample gaps of the
order of the Debye length or less, the effect of charge regu-
lation becomes apparent. The local concentration of protons
increases with decreasing tip-sample separation. Charge regu-
lation then leads to a partial re-adsorption of protons to the
solid surface, as a comparison between the dotted lines for the
CC boundary and the solid lines for the CR boundary shows.
A CP boundary condition (dashed lines) would lead to even
more pronounced re-protonation of the surface. At the smal-
lest separation (black curves), the proton concentration is
almost constant all across the gap, as expected for the thick
double layer limit. Note that the Na+ and the K+ ions follow
exactly the same Boltzmann distribution, except for the gener-
ally different limiting concentration in the bulk.

It is also interesting to consider explicitly the consequences
for the composition of the surface. It turns out in the first
place that the total degree of deprotonation, Γ − {SiOH}, is
rather low as expected for the conditions of our experiments at
pH ≈ 6, see Fig. 8(a). Given the typical site density of 8 sites
per nm2, this low degree of deprotonation implies that the
average separation between charged sites on the surface is of
the order of a few nanometers, which is comparable to the dia-
meter of supersharp AFM tips that are typically used for high
resolution AFM imaging. From that perspective, it is not sur-
prising that supersharp tips hardly feel the presence of such
small degrees of surface charge. One may also question,
whether the use of a continuous surface charge density is still
appropriate under such conditions. The second notable
feature in Fig. 8(a) is that most of the deprotonated silanol
groups on the surface directly adsorb a cation from the solu-
tion. Addition of salt thus promotes the replacement of
surface-bound protons by cations. This observation holds for
all conditions shown in Fig. 3, and is slightly more pro-
nounced for the slightly more strongly adsorbing K+ ions than
for Na+. The majority of the surface charge is thus compen-

sated directly in the Stern layer rather than in the diffuse part
of the double layer. This conclusion is consistent with X-ray
reflectivity studies,48,49 optical measurements,50,51 and recent
molecular simulations.47,52 One consequence of this obser-
vation is that the surface charge as determined from an AFM
(or SFA) force measurement, which is based on the ion distri-
bution in the diffuse layer, is always lower than the charge
density determined by a titration measurement that measures
the total number of protons or ions adsorbing to or desorbing
from a surface.53

As a final remark, Fig. 8(a) also shows that the coverage of
the various species on the surface does not depend very
strongly on the tip-sample separation. As expected, both
protons and cations condense onto charged SiO− sites as tip
and sample are brought closer together and the total residual
surface charge decreases, as shown schematically in Fig. 8(b).
Yet, the total variation between infinite separations and a
minimum separation D ≈ 1 nm, down to which the model is
reasonably applicable, is typically of the order of several
percent. This implies that the chemical composition of the
surface in this range is not dramatically altered by the pres-
ence of the AFM tip. This conclusion is crucial for the
interpretation of AFM measurements in general.7,11,12,54–57 It

Fig. 8 (a) Fraction of total deprotonated and ion-occupied surface sites
in solutions of NaCl and KCl at 10 mM for silica/silica interaction. (b)
Schematic illustration of proton and ion transfer during the course of
charge regulation as the AFM tip move towards the silica sample. Upon
decreasing the tip-sample distance both protons and cations migrate
from the solution to the silica surfaces.

Fig. 7 Effect of charge regulation on pH/proton concentration distri-
bution between tip and silica sample within 10 mM NaCl solution for
tip-sample separations of D = 50 nm (green), 5 nm (red) and 1 nm (black)
corresponding to weak, intermediate and strong double layer overlap
(Debye length: 1/κ = 3 nm).
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illustrates that the structure of a solid–electrolyte interface as
probed by AFM in high resolution spectroscopy or in high
resolution imaging mode is hardly affected by the presence of
the tip. While charge regulation has a strong effect on the net
surface charge and hence the measured forces, as shown in
Fig. 3, the fraction of adsorbed ions still provides a fairly good
representation of a single interface in contact with a bulk elec-
trolyte for all the conditions studied here.

Some caveats apply. Obviously, this conclusion holds
within the limitations of the present mean field Poisson–Boltz-
mann model. Under conditions of atomic resolution imaging,

where short range chemical and hydration forces play an
important role, the picture may be altered. Moreover, the
present considerations are limited to a symmetric system, in
which tip and sample are made of the same material. If the
material of tip and sample behave very differently, e.g. one
acting as a proton donor and the other one as a proton accep-
tor, the effect of bringing of close proximity may be more pro-
nounced. Yet, our results obtained so far all suggest that the
tip can be reasonably well considered as a moderate pertur-
bation of a state that is overall governed by the properties of
the individual solid–electrolyte interface.

Fig. 9 Calculated fraction of surface complexes for individual silica-electrolyte interfaces as a function of pH and salt concentration. (a) {SiO−}/Γ in
NaCl (left) and KCl (right) solutions. (b) {SiO−Na+}/Γ complexes (left) and {SiO−K+}/Γ complexes (right) in the corresponding salt solutions. The pK
values are those globally optimized in Fig. 5. Plot (b) also includes the contour lines of two dimensionless parameters,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
=κ (white dash

lines) and 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
(red dash lines). (Note the difference in gray scale in a) and b).).
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4.3 Extrapolation to variable pH and limitations of Poisson–
Boltzmann approach

The good consistency of the analysis presented so far for
silica surface, encourages us to extrapolate our data to a
broader range of fluid compositions, including in particular
conditions of variable pH. Substituting the globally opti-
mized pK values of deprotonation and Na+ and K+ adsorption
into our numerical scheme, we calculate the concentration of
surface species in the limit D → ∞ for silica surface, and the
results are shown in Fig. 9. The calculations display several
expected qualitative trends. For both NaCl and KCl, the frac-
tion of free deprotonated SiO− groups monotonically
increases with increasing pH at all concentrations (Fig. 9a).
In contrast, the behavior as a function of the salt concen-
tration at fixed pH is non-monotonic because two opposing
processes compete. On the one hand, the increasing salt con-
centration improves the screening of electric fields and
thereby reduces the energetic cost for the system to increase
the surface charge by deprotonation. This trend prevails for
low salt concentrations. This process competes, however,
with the formation of SiO−C+ complexes on the surface
according to eqn (15). At higher salt concentrations, the
latter process dominates and causes a decrease of the frac-
tional coverage of SiO−, along with an increase of {SiO−C+}.
As expected, {SiO−C+} increases monotonically both with
increase pH and with increasing salt concentration, see
Fig. 9b.

This extrapolation of the model predictions to a broader
range of fluid compositions also allows for a systematic discus-
sion of the limitations of the applicability of the Poisson–
Boltzmann treatment applied in this study. Various deviations
from the simple Poisson–Boltzmann picture have been dis-
cussed in the literature.58 The most important corrections
include the breakdown of the mean field approach due to
direct electrostatic correlations between adjacent ions and the
neglect of the finite radius a of the ions. A criterion for the val-
idity of the mean field approach can be determined by com-
paring the average separation between adjacent adsorbed
cations C+ on the surface to the Debye screening length. The
white solid lines in Fig. 9b show iso-lines of fixed values of the

ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
=κ. If this ratio is not too large, many screen-

ing charges are found between adjacent surface charges and
hence the mean field picture is expected to hold – and vice
versa. Fig. 9b thus shows that the mean field approach primar-
ily becomes questionable at high pH for low salt concen-
trations, i.e. for conditions of poor screening but nevertheless
high degrees of deprotonation.

Similarly, we can consider the ratio between the diameter
2a of the (hydrated) ions and the average distance between

adsorbed ions, i.e. 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSiO�Cþg

p
. The corresponding red iso-

lines in Fig. 9b show that neglecting the finite ion radius is
acceptable provided that the pH and salt concentration are not
simultaneously high. For the specific conditions of our experi-
ments (pH ≈ 6 and c∞ = 5 × 10−4 to 0.1 M) the two criteria are
indeed decently fulfilled, as Fig. 9b shows.

5 Conclusions

We used AFM force measurements with sharp tips to probe
the surface chemistries/charging behavior of two interacting
solid surfaces in aqueous solutions of NaCl and KCl of variable
concentration. In agreement with earlier studies using col-
loidal probe force microscopy, we find that the measured
force–distance curves between tip and sample can be
described quantitatively down to tip-sample separations of
1–2 nm by taking into account charge regulation (CR), i.e.
adsorption/desorption of protons and salt ions as induced by
the proximity of tip and sample. For silica surfaces, our sys-
tematic approach of simultaneously analyzing experimental
data obtained for a variety of salt concentrations allows for
quantifying the equilibrium constants for the deprotonation of
silanol groups and for the adsorption of Na+ and K+ cations.
Given the fact that the vast majority of AFM experiments are
carried out with tips made of oxidized silicon, our results can
be used to quantify the charge of most AFM tips in some of
the most common aqueous electrolyte solutions. Our measure-
ments on the gibbsite surface illustrate the usefulness of this
knowledge. Although the identification of the correct surface
speciation reactions fails on the more complex gibbsite sur-
faces, the ability to quantify the charge density on the AFM tip
nevertheless enables the measurements of the net surface
charge density and thus provides a useful characterization of
the material. In contrast to earlier colloidal probe AFM
measurements, this is now possible in AFM measurements
with sharp tips and a lateral resolution of the order of the tip
diameter (in nanometers).
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