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Cancer stem cells: small subpopulation or
evolving fraction?

Heiko Enderling

Central to the debate about cancer stem cells in solid tumors is the proportion of cells that can initiate,

propagate, and re-initiate tumors. An initially assumed minor subpopulation is confronted with recent

data suggesting as many as 30% of primary tumor cells have stem cell characteristics. This review

discusses quantitative modeling studies that augment our understanding of stem and non-stem cancer

cell interactions during tumor progression and the resulting fraction of cancer stem cells. A discussion

of how these findings can be carefully evaluated in novel, integrated interdisciplinary studies is offered.

Insight, innovation, integration
This review features a discussion of mathematical and computational models of tumor growth dynamics that directly or indirectly inform us about the fraction
of cancer stem cells. It discusses cell–cell interactions as well as interaction of cancer cells with their microenvironment at different stages of tumor growth and
during treatment. The article emphasizes the power of quantitative modeling in translating first-order principles into new hypotheses that motivate iterative,
integrated theoretical-biological studies to settle the argument about cancer stem cell fraction size.

Introduction

After Till and McCulloch discovered stem cells at the top of the
hematopoietic system hierarchy in the 1960s,1 it became
apparent that human acute myeloid leukemia is also organized
hierarchically. Leukemia is initiated and fueled by a leukemic
stem cell that gives rise to transit-amplifying progenitor cells and
eventually differentiated cancer cells with limited lifespan.2 The
tumor stem cell terminology is attributed to Carney,3 who found
the ‘stem cell nature’ of clonogenic lung cancer cells initiating
tumors that mimicked lung cancer in nude mice.4 Retrospectively,
the term ‘cancer stem cell’ probably caused a more heated
debate than the subject itself. ‘Cancer stem cell’ may suggest
the malignant transformation of a ‘tissue stem cell’, which due
to its longevity and potency could serve as a cell of disease
origin.5–8 Although intestinal cancer may be initiated by a
transformed stem cell,9 a mutated progenitor cell with acquired
stem-like traits is more likely to initiate myeloid malignancies
and NF1- and PDGF-driven glioblastoma.10,11 In the colonic crypt,
a stem cell or a transit-amplifying cell may become a cancer stem
cell, dependent on which cell type first circumvents inhibitory
feedbacks.12,13 Further fueling the terminology debate is the

variety of names for cancer stem cells, including tumor stem
cells,14 tumorigenic cells,15 tumor-initiating cells,16 and tumori-
genic side population,17 to name just a few. Even individual
research groups change the terminology of their identified cell
populations in subsequent publications, arguably due to journal
and editorial staff preferences.

The first decade of the 21st century saw an advent of prospective
identifications of cancer stem cells in various tissues including
breast,18 brain,19 prostate,20 and colon.21,22 Cancer stem cells in
most, if not all, organ systems are identified, or better enriched
for, through the expression of surface markers. Surface marker
expression may not be unique to cancer stem cells,23 and putative
stem cell marker expression in tumor populations spreads many
orders of magnitude for most tumors, with even higher variations
when experimental model systems vary.24–26 Dilution assays on
these subpopulations suggest that the actual fraction of true
stem cells in already small, enriched subpopulations is less
than 1%, prompting the widely held notion that cancer stem
cells are a minor subpopulation. Although this is a seemingly
trivial statement about proportions, much is put at stake. The
concept of cancer stem cells in some tissues was challenged in
its entirety by Sean Morrison, a co-author of the article that first
identified breast cancer stem cells,18 who in 2008 showed that
as many as 27% of unselected melanoma cells from different
patients form tumors under permissive conditions.27 This fueled
the discussions about whether rare cancer stem cells are needed
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to drive tumor growth,28 and whether a cancer stem cell popula-
tion per se exists.29 Kern and Shibata cautioned about the ‘fuzzy
math’ often employed to explain subpopulation fractions in
different experimental setups.30

Although prospective identifications of cancer stem cells
suggested the stem cell population to be small, its relative size
was not an identifier. The predominant notion of minority,
however, shatters the stem cell community due to its subjectivity.
Is 27% a small subpopulation? If expressed mathematically—the
unifying language of nature—subjectivity is put aside. Borrowing
from set theory, the set of cancer stem cells is a true subset of
cancer cells if at least one cancer cell is not a stem cell. It also
remains a subset if all cells are cancer stem cells. Hence, any
frequency of cancer stem cells is a subpopulation. Even a pure
cancer stem cell population does not negate the cancer stem cell
hypothesis, though this would mimic the more traditional view
that most if not all cells in a tumor can proliferate extensively
and metastasize successfully.31 The true hypothesis then is the
existence of cancer cells that cannot form tumors and, pedanti-
cally, should be the cancer non-stem cell hypothesis.32

Cancer (stem) cell kinetics

The fraction of cancer stem cells in a tumor emerges as a result
of the interplay between stem and non-stem cancer cells, which
depends on their respective underlying phenotypic kinetics.
All cancer cells can undergo symmetric division, in that the
fate of both daughter cells is identical to the fate of the mother
cell. Cancer stem cells additionally have the ability to divide
asymmetrically, whereby one daughter cell remains a stem cell,
while the other daughter cell adopts a non-stem cancer cell
trait. Fig. 1 summarizes the kinetics of stem and non-stem
cancer cells. The probabilities of symmetric and asymmetric
division are driven intrinsically by gene expression, but can also
be modulated by external signals provided by the so-called
niche.33 Intracellular Wnt and Notch pathways have been

shown to regulate the division fate of colon stem and colon
cancer stem cells.34 On the other hand, EGF/bFGF-rich environ-
ments regulate glioma stem cells to divide symmetrically more than
80% of the time. Growth factor withdrawal decreases symmetric
division by 17% in favor of asymmetric division.35

For tumor initiation and re-initiation capability, the cancer
stem cell population must be virtually inexhaustible. If cancer
stem cells are mortal, self-renewal must occur at higher rates than
cell death or differentiation. The inability of non-stem cancer cells
to initiate tumors infers their limited proliferation potential. At
each non-stem cancer cell division, both daughter cells inherit a
decremented potency, arguably due to shortening of telomeres,
the non-coding DNA repeats at the end of chromosomes.36,37

Telomeric erosion inevitably leads to arrest, senescence, and cell
death.38,39 Upregulated telomerase rebuilds telomeric DNA,40 and
telomerase activity in cancer stem cells may be the key to long-
evity.41,42 Telomere length may be surprisingly short in cancers,
indicative of low non-stem cancer cell proliferation potential.43

Cancer (stem) cell plasticity

In recent years, discussions have emerged that stemness may
not be a cancer cell phenotype; rather it might be a transient
state that can be induced and lost dependent on the cellular
environment and signaling context.44–47 Cells within the stem-
ness niche adapt a stem cell state, and cells leaving the niche
lose stem cell characterization. Acquisition of stem cell proper-
ties has been demonstrated through induced pluripotency,48

which following the Waddington landscape can be described as
a push from an energetically favorable differentiation state in a
valley uphill beyond energetic barriers to a transient progenitor
state.49,50 Plasticity in cellular fate adds additional layers of
complexity to the discussion about the proportion of cancer
stem cells. First, the number of cancer stem cells then depends
on both time and niche affinity. Second, it introduces hetero-
geneity within the stem cell population. Early progenitors
that adapt a stem cell state confer different kinetic properties
to the new stem cell than de-differentiating cells that are closer
to their terminal phenotype. Quantitative mathematical and
in silico agent-based computational models may help decipher
the complexity that arises from the myriads of stem and non-
stem cancer cell interactions. This review summarizes some of
the most prominent mathematical and computational models
and discusses their conclusions about the fraction of cancer
stem cells in tumors.

Mathematical models elucidating
cancer stem cell fractions

Enriching the discussion about the frequency of cancer stem
cells in tumors is a rapidly growing number of quantitative
mathematical models of stem cell-driven tumors. By reducing the
complex biology of stem and non-stem cancer cell interactions
into minimalistic and intentionally simplistic mathematical and
computational models, first-order principles and key underlying
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biological mechanisms can be identified, from which long-term
population evolution dynamics and causality conclusions may be
drawn. Each tumor subpopulation can be described as a compart-
ment, and compartments are connected by transition rates describ-
ing asymmetric division or (de)differentiation events. Let S(t) and
C(t) respectively describe the number of cancer stem cells and non-
stem cancer cells at time t. The number of cells changes over time,
which may be described by differential equations dS/dt and dC/dt
(difference in cell number, dS or dC, per difference in unit time,
dt; dt = 1 day for example; Fig. 2). The proportion of cells
that undergoes biological changes in the time window dt can
be measured experimentally and translated into parameters in
the mathematical equations.51 More sophisticated models may
include additional subpopulations including transit-amplifying
cells (i.e., T) and differentiated cells (i.e., D) (Fig. 2).

Using a differential equation model, Johnston et al. showed
that any fraction of cancer stem cells is possible, dependent on
the balance of cancer stem cell self-renewal and differentiation
rates.52 To sustain exponential tumor growth with a cancer stem
cell population of less than 1% of the total tumor, symmetric
and asymmetric cancer stem cell division rates must be of the
same order of magnitude, and non-stem cancer cells must divide
more frequently and have significantly higher cell death rates.53

In addition to net growth rates of tumor subpopulations, the
fraction of cancer stem cells in exponentially growing tumors
also depends on the generational hierarchy of the non-stem cell
population, which is determined by the non-stem proliferation
potential, vis-à-vis telomere length.54 Intuitively, the fraction
of cancer stem cells is inversely related to the non-stem cell
proliferation potential. Larger proliferation potentials give rise

Fig. 1 Stem and non-stem cancer cell kinetics. (a) Cancer stem cells (CSC) can divide symmetrically and asymmetrically (which produces a first
generation non-stem cancer cell (CC1)), or undergo symmetric commitment, whereby both daughter cells adopt a CC1 fate. Cancer cells of generation i
divide symmetrically to generate two i + 1 generation daughter cells (CC1 - 2� CC2). (b) Cancer cell fate lineage. Final-generation daughter cells with an
exhausted ‘mitotic clock’ die in a subsequent mitosis attempt. Dotted arrows indicate potential de-differentiation and phenotypic plasticity.

Fig. 2 Example of two- and three-compartment mathematical models. Graphical scheme of the models (left), mathematical formulation of the
schematic model (center), and exemplary simulation result for tumor growth from initially one cancer stem cell (right). At half time, the stem cell
population is removed to visualize population collapse without cancer stem cells. S: population of cancer stem cells (CSC), C: population of non-stem
cancer cells (CC), T: population of transit-amplifying cells (TAC), D: population of terminally differentiated cells (DC). l* proliferation rates, a* self-renewal
probabilities, b* death rates, and g mitotic exhaustion rate.
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to larger non-stem populations, which decrease the proportion
of cancer stem cells.

An analysis of the growth dynamics of multicellular spheroids
in vitro with differential equations that include exponential
growth and inter-conversion between stem and non-stem cancer
cells suggests a transient cancer stem cell fraction that decreases
from stem cells being a majority to a stable proportion of about
1.5%.55 However, as tumors increase in volume, their growth
becomes self-regulated.56,57 To observe such growth saturation,
negative feedback loops from non-stem cancer cells on cancer
stem cell division, as well as on symmetric division rate, are
required to control the cancer stem cell population.58 Negative
control has been confirmed to also maintain a constant cancer
stem cell fraction under spatial considerations.59 In addition to
reciprocal feedback loops, the per capita rate of growth for all
subpopulations depends on the tumor size in relation to its
supporting tissue and organ structure. The consideration of a
carrying capacity in logistic or Gompertzian growth models60,61

exerts pressure on tumor subpopulations, enabling selection for
and evolution of phenotypes with longevity. With a positive net
growth rate of the cancer stem cell population combined with loss
from the non-stem cell population when proliferation capacity
is exhausted, the fraction of cancer stem cells monotonically
increases.62 The time required to achieve a pure cancer stem cell
population depends on the balance of kinetic parameters. How-
ever, such state likely exists only theoretically, as human life is
short compared to evolutionary dynamics, and patients likely
succumb to their primary and/or distant disease burden before
the tumor is purified. Nevertheless, these studies suggest that the
cancer stem cell fraction may not be an absolute value, but instead
continuously evolving (Fig. 3).

Cell-based in silico models elucidating
cancer stem cell fractions

Mathematical models of cancer stem cell-driven tumor growth
have suggested that feedback loops between subpopulations as
well as environmental selection pressures may play a pivotal role
in determining the fraction of cancer stem cells. Spatially explicit

cell-based computational models are uniquely positioned to
simulate cell–cell and cell–environmental interactions and to
investigate the roles of these interactions in modulating cancer
stem cell fraction. Cells are individual agents with a set of intrinsic
properties and rules to execute in response to environmental cues
or when internal properties change (Fig. 4). Agent-based models
are frequently utilized in theoretical oncology as single cell
kinetics that are observed experimentally in vitro can be used to
inform single cell behavior, and non-linear, complex and often
unintuitive population level dynamics emerge without a priori
constraints on the population. Assumptions about cell kinetics
can be systematically challenged until population dynamics are
observed that match experimental or clinical observations. Cell
properties such as cell cycle phase times, migration rate, or
proliferation fate can be fixed for simplicity or dynamically
determined by internal and external signal processing. Dynamic
cell properties can, for example, be modeled utilizing differential
equations that determine subcellular protein concentrations
or extracellular nutrient gradients. The behavior of each cell is
individually advanced at discrete time steps, and complex popula-
tion level dynamics emerge by many individual cells interacting
with each other and competing for (or cooperating in) the same
environment. The decision process of cell agents is conventually
outlined in simulation flowcharts (Fig. 4). In agent-based models of
cancer stem cell-driven tumors, the non-stem cancer cell popula-
tion competes with stem cells for resources, including space in
the simplest case. With low probability of symmetric cancer stem
cell division, the non-stem population quickly outnumbers and
encapsulates the founding stem cell, leading to spatial inhibition
and tumor population dormancy.63,64 The fraction of cancer stem
cells – or single stem cells – then depends on the proliferation
potential of progenitor non-stem cells, with larger proliferation
potentials intuitively yielding a larger non-stem cancer population
and thus a smaller stem cell ratio (Fig. 4) – analogous to the
findings of the aforementioned multi-compartment mathematical
model.54 Liberation of the cancer stem cell may yield symmetric
division and opportunistic spatial separation of the two stem
cells to seed independent clones in each other’s vicinity. The
separation of individual tumor nodules increases the overall
population’s surface-to-volume ratio that enables decremented

Fig. 3 Evolution of temporal tumor subpopulations. Selection for cancer stem cells and evolution toward a pure cancer stem cell population (a) in a
two-compartment mathematical model with a carrying capacity and cell turnover; and (b) in an agent-based model of stem and non-stem cancer cells in
a confined circular domain (carrying capacity) and cell turnover. tend refers to the simulation time when a pure stem cell population has evolved. Yellow:
cancer stem cells; red-black: gradient of cell proliferation potential in non-stem cancer cells. Faded dashed curves in (a) and faded simulations in (b) show
results with increased cell death providing faster turnover. Adapted from ref. 62.
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exponential growth.65 This fractal morphology66–68 yields self-
similar nodules with a constant cancer stem cell fraction.69

With increasing number of self-metastases, however, individual
nodules may merge and saturate the local carrying capacity.
Spontaneous or proliferation-limited non-stem cancer cell
death transiently makes space available for which neighboring
cells compete to proliferate into.70 Such opportunistic prolifera-
tion selects for the long-lived stem cell population, which yields
to a steady increase in cancer stem cell number in the population
interior as well as increased overall stem cell fraction. Older
tumors held at a local carrying capacity then harbor more stem
cells than younger tumors.32

In silico cell-based models show that individual cell kinetics
contribute to tumor growth and stem cell fraction in a non-
monotonic manner; that is, while increasing a specific trait can
promote tumor growth, a further increase in that trait may
inhibit overall progression, and vice versa.63,69 This yields to
complex, nonlinear population-level dynamics with changes
in every parameter, potentially modulating the cancer stem
cell fraction and tumor morphology.68,71 A tumor exclusively

comprised of cancer stem cells – resembling the classic under-
standing of cancer that each cell is able to initiate, propagate
and re-initiate a tumor – grows in a radially symmetric manner
of a circle or a sphere, in two or three dimensions, respectively.
Phenotypic cell heterogeneity yields irregular tumor growth with an
invasive morphology at intermediate symmetric stem cell division
rates and cancer stem cell fractions dependent on the balance of all
cell kinetics contributing to tumor progression.32,63,71

Treatment-modulated cancer stem
cell fraction and kinetics

Compared to their non-stem counterparts, cancer stem cells are
intrinsically more resistant to conventional cytotoxic therapies,
including radiation72,73 and chemotherapy74,75 arguably due to a
low proliferation rate combined with superior DNA repair
mechanisms and molecular pumps that actively eject drugs from
the cell.72,76,77 With that, every application of therapy increases
the fraction of cancer stem cells in a tumor78 and treatment is

Fig. 4 Example of a hybrid in silico model of cancer stem cell-driven tumor growth. (a) Intrinsic properties of cancer stem cells (CSC) and non-stem
cancer cells (CC). (b) Partial differential equation to model the concentration of oxygen (O2). Adapted from ref. 104. (c) Example simulation flowchart for a
hybrid in silico model. Adapted from ref. 62 and 104. (d) Sample simulations of cancer stem cell-driven tumor growth and cancer stem cell fraction
dependent on cancer stem cell intrinsic properties. All tumors have 10 000 cells and were initiated with one CSC with properties as listed above each
simulation snapshot. Color-coded are CSC in yellow, and red to black are CC with decreasing remaining telomere length. Adapted from ref. 62.
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only successful if all cancer stem cells are eradicated.79 Therapy
that leaves behind an enriched cancer stem cell population
without significant non-stem cell competition can set up an
aggressive repopulation.63 Treatment-induced enrichment also
varies greatly with dose rate.80,81 Increased resistance to therapy
alone, however, is insufficient to explain the dose rate-dependent
enrichment in cancer stem cells; more complex dynamics must be
at play. Treatment may transiently transition non-stem cancer cells
into a stem cell state; mathematical and computational models
have shown to match in vitro and in vivo experimental data in this
regard.81,82 Alternatively, treatment might create environmental
conditions or promote intrinsic factors that trigger developmental
survival and damage response programs in cancer stem cells that
switch proliferation kinetics in favor of symmetric division.83

Treatment-induced shifts in stem cell kinetics have also been
observed in physiological settings. An integrated experimental-
computational study of irradiating stem cells in the mammary
gland showed that increased self-renewal and de-differentiation
via epithelial–mesenchymal transition (EMT) are independent
processes.84 Stem and progenitor cell populations grow with
increased self-renewal when combined with extensive proliferation
such as during puberty, whereas EMT-modulated de-differentiation
was shown to increase the stem cell fraction after irradiation in
less proliferative adult glands.

Environmentally modulated cancer
stem cell fractions

It is increasingly appreciated that stem cells may exist only in
specific environments and their stemness maintained by factors in
their niche.85–89 Spindle-shaped N-cadherin+ CD45- osteoblastic
cells that line the bone in the marrow form the niche of hemato-
poietic stem cells,90 the subgranular zone of the hippocampal
dentate gyrus and the subventricular zone of the lateral ventricle
wall are neural stem cell niches,91 and paneth cells represent
the niche for stem cells in intestinal crypts92 to name but a few.
Abundance of EGF and bFGF has been shown to promote
symmetric glioma stem cell division,35 and Wnt in competition
with Dickkopf1 regulates breast cancer stem cell fate.93,94 In
pathological tissues with loss of tissue architecture, cancer stem
cells may be located in the bulk tumor but also prominently in
the invasive tumor border zone.95 This prevalence of cancer
stem cells at the edge of the tumor combined with evidence of
cell dissemination suggests that an epithelial–mesenchymal
transition may induce stemness.96,97 Plasticity in cell fate may
be further fueled by spatial and temporal heterogeneity of the
pathological environment. It is conceivable that inherently
opposing perivascular and perinecrotic niches for cancer stem
cells98 are in fact the same geographic location within a tumor
at different time points, with blood vessels occluding and
reopening with varying tumor mass pressure.99 Cancer stem
cells adapt to nutrient restriction in perinecrotic areas by meta-
bolic shifts to preferential glucose uptake,100 and acidic environ-
ments may further promote survival and stem cell self-renewal
through expression of angiogenic factors.101

Quantitative models of microenvironmental regulation of
cancer stemness have been sparse. Sottoriva and colleagues
were the first to make progress into in silico modeling of niche-
directed stem cell kinetics.102 In a cellular automaton model,
solid tumors with intrinsic stem cell renewal rates are compared
to tumors whose stem cell division kinetics or stem cell state is
determined by an arbitrary environment. Interestingly, intrinsic
and environmental regulation of stem cell division yields
comparable growth, morphologic instability, and phenotypic
heterogeneity when environmental feedback is calibrated to
yield cancer stem cell ratios similar to intrinsic kinetics.
Characteristics of tumors with a cellular hierarchy are therefore
quite robust, independent of what regulates the kinetics of the
driving cell subpopulation.102

Scott and colleagues adapted a hybrid discrete continuous
framework103 of individual in silico cells on a discrete layer and
heterogeneous oxygen concentration that is modeled using partial
differential equations on a continuous level.104 Oxygen is produced
at fixed locations of blood vessels arbitrarily distributed throughout
the computational domain. Diffusion from areas of high oxygen
concentration replenishes oxygen that is locally consumed by
cancer cells, and cells die if basal oxygen falls below a sustainable
level. Model simulations revealed that the combination of plausible
symmetric stem cell renewal rates and progenitor proliferation
capacities could yield different population dynamics. Populations
are unsustainable if tumor cell density increases local oxygen
tension that induces stem cell death. Population homeostasis, or
tumor dormancy, is observed when the non-stem cell population
spatially inhibits cancer stem cells without depleting oxygen.
Homeostasis is disrupted and malignant population growth is
observed in different vascular densities when progenitors are
short-lived and oxygen is plentiful. Emerging local oxygen
tension during aggressive growth yields local cell death and
subsequent repopulation by adjacent cell colonies.104 To ade-
quately simulate the perturbation of self-renewal rates by stem
cell niche factors, direct feedback on cell kinetics must be
modeled. Gentry and Jackson incorporated niche feedback on
cell kinetics in a differential equation framework of stem cell
homeostasis and mutation-derived perturbation to exponential
malignant growth.105 Stem cells secrete chemical factors that
inhibit self-renewal and avoid overcrowding of the niche. A small
stem cell population yields a low inhibitory factor concentration
that increases stem cell symmetric division. Mutations may cause
stem cells to become independent of environmental feedback.
A continued proliferation of mutated stem cells increases cell
density in the niche and forces unmutated stem cells into differ-
entiation. In combination with increasing the carrying capacity of
stem cells, cancer stem cells quickly develop if their mutation
trajectory follows decreased cell death, faster proliferation with
higher self-renewal rates, and increased mutation rates.105

In an integrated computational-experimental study, Agur and
Clarke developed a model of cell interaction kinetics dependent
on intra- and inter-cellular concentrations of breast cancer
stem cell-regulating proteins, including Dickkopf1 (Dkk1),
Wnt, Notch, and E-cadherin.93 Stem cells process external
signals to determine internal protein levels that trigger cell

Critical Review Integrative Biology

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
O

ct
ob

er
 2

01
4.

 D
ow

nl
oa

de
d 

on
 9

/2
2/

20
24

 1
:4

4:
50

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4ib00191e


20 | Integr. Biol., 2015, 7, 14--23 This journal is©The Royal Society of Chemistry 2015

proliferation or differentiation. The model predicts that increasing
E-cadherin, Wnt, and Notch by 20% doubles the average cancer
stem cell number in a fixed-size population and thus the cancer
stem cell ratio. Continuous administration of high levels of Dkk1,
a negative regulator of Wnt, is required to drive the cancer stem
cell pool to extinction.93 A continuous mathematical model of
spatiotemporally varying stem cell-released feedback signals on
stem cell division kinetics enables evaluation of tumor morphology
evolution.59 An initial cluster of cancer stem cells separates into
individual stem cell pools near the boundary of the growing
population that eventually break away into individual clusters.
Each cluster is driven by a cancer stem cell or a small cancer
stem cell population that is surrounded by non-stem cancer cells
reminiscent of a self-metastatic morphology68 that increases the
surface-to-volume ratio65 to prevent self-inhibition.56,57

Discussion and future directions

The prospective identification of tumor-initiating cells has
revolutionized our understanding of tumor biology and polarized
the cancer research community.29,106–109 If tumors were fueled by
a small subpopulation of stem cells, then targeting theses cells –
however difficult this might be – would provide a new therapeutic
approach in lieu of gross tumor volume reduction with severe
side effects to normal adjacent and distant tissues. Central to
the cancer stem cell debate is the very fraction of the stem cell
subpopulation. Although initial reports indicated a minor side
population, a much larger fraction of cells with tumor-
initiation capability has more recently been argued.27 Further
complicating matters are the use of different experimental
protocols and endpoints to identify cancer stem cells and the
eccentric use of mathematical calculations to derive stem cell
fractions.30 Quantitative scientists – mathematicians, computer
scientists, physicists, and engineers – have taken notice of the
fascinating field of cancer stem cells as well as the arising
debates and controversies. Numerous theoretical studies of
stem and cancer stem cells have been developed to investigate
subcellular-, cellular-, and population-level biological dynamics
using discrete, continuous, or hybrid modeling techniques.110–128

Quantitative and qualitative models have provided novel, thought-
provoking insights into the concept of cancer stem cell fraction. To
identify the ratio of stem and non-stem cancer cells, one has
to discriminate the conditions of tumor growth and regulation of
cell kinetics. During unrestricted tumor growth, the early phase
of Gompertzian growth dynamics60,129–131 when resources are
plentiful, physical constraints negligible and self-inhibitory signals
diffusive, the constant fraction of cancer stem cells is likely to be
small, as determined by the balance of biologically plausible cell
intrinsic kinetic rates. This growth phase is conceivable to be
reminiscent of in vitro conditions, and the ratio of cancer stem
cells observed in laboratory experiments may provide valuable
information about intrinsic proliferation and self-renewal rates
as well as progenitor proliferative potentials.53,54

Clinically apparent tumors in patients rarely follow an
exponential growth trajectory. Tumor growth decelerates as

the surface-to-volume ratio of the tumor decreases, arguably
due to increased intratumoral pressure, a limited supply of
nutrients to the interior, and insufficient removal of metabolic
waste products from the tumor core.56,132–134 From the undisputed
long-term self-renewal property of cancer stem cells and their
superior survival mechanisms in harsh environments compared
to their non-stem counterparts,100 it follows that the tumor cell
population becomes enriched in cancer stem cells over time.
Therefore, the fraction of cancer stem cells in tumors that are
forced into slow growth regimes or even dormancy is continuously
evolving – a monotonic increase toward a pure cancer stem
cell population.32,62 The observed cancer stem cell fraction,
although far from the theoretical equilibrium, may reflect
the age of a tumor and its individual history in overcoming
local carrying capacities.135 Patients with comparable tumor
subtype and pathology at diagnosis may have experienced
vastly different tumor development trajectories, leading to
different cancer stem cell fractions and opposing responses
to treatment and overall survival, offering yet another motiva-
tion for personalized medicine.

Increasing the complexity of cancer stem cell biology is
environmental modulation of intrinsic cell kinetics and pheno-
typic identity. Growth factors and inhibitory signals in the tumor
microenvironment and cancer stem cell niche alter proliferation
rate, self-renewal frequency, and even stemness character.35,102,136

Continuous, reciprocal modulation of the tumor and its environ-
ment yields spatiotemporal heterogeneities in signaling factor
prevalence, further suggesting a highly dynamic ratio of cancer
stem cells. To fully understand stem cell and cancer stem cell
behavior, experimental and theoretical modeling approaches
must be integrated and iteratively inform and validate each
other. The presented modeling studies suggest that experi-
mental protocols should include sequential measurements to
capture the temporal evolution of the cancer stem cell fraction
in heterogeneous populations. Calibrated in silico simulations
might help determine the experimental time points to keep
increased experimental costs to a minimum. Furthermore,
quantitative models have shown that the dynamics of complex
systems are best understood if perturbed and far from equilibrium.
Increased selection forces such as strengthened immune sur-
veillance or cytotoxicity from therapeutic agents might provide
such perturbations, with the added benefit to further our
understanding of temporal responses of different phenotypes
to clinical intervention.

While some of the herein discussed models are qualitative and
others quantitative, they all are speculative. Each model is based on
simple assumptions and subject to gross oversimplifications of
reality to investigate confined questions. Nevertheless, quantitative
models offer fascinating insights into the complex, nonlinear
dynamics of a heterogeneous tumor population that mandate
further conceptual, experimental, theoretical, and clinical investi-
gations before taking sides in the discussion about stem cell
prevalence. Regardless of whether model predictions will be experi-
mentally confirmed or rejected, new biological insights will be
derived that may inform the next generation of quantitative model
development, hypothesis generation, and experimental verification.
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7, e26233.

54 S. L. Weekes, B. Barker, S. Bober, K. Cisneros, J. Cline,
A. Thompson, L. R. Hlatky, P. Hahnfeldt and H. Enderling,
Bull. Math. Biol., 2014, 76, 1762–1782.

55 T. Peng, M. Qinghua, T. Zhenning, W. Kaifa and J. Jun,
PLoS One, 2011, 6, e25518.

56 J. Folkman and M. Hochberg, J. Exp. Med., 1973, 138,
745–753.

57 R. T. Prehn, Cancer Res., 1991, 51, 2–4.
58 X. Liu, S. Johnson, S. Liu, D. Kanojia, W. Yue, U. P. Singh,

U. Singn, Q. Wang, Q. Wang, Q. Nie and H. Chen, Sci. Rep.,
2013, 3, 2473.

59 H. Youssefpour, X. Li, A. D. Lander and J. S. Lowengrub,
J. Theor. Biol., 2012, 304, 39–59.

60 B. Gompertz, Philos. Trans., 1825, 115, 513–583.
61 R. K. Sachs, L. R. Hlatky and P. Hahnfeldt, Math. Comput.

Model., 2001, 33, 1297–1305.
62 T. Hillen, H. Enderling and P. Hahnfeldt, Bull. Math. Biol.,

2013, 75, 161–184.
63 H. Enderling, A. R. A. Anderson, M. A. J. Chaplain,

A. Beheshti, L. R. Hlatky and P. Hahnfeldt, Cancer Res.,
2009, 69, 8814–8821.

64 H. Enderling, Adv. Exp. Med. Biol., 2013, 734, 55–71.
65 L. Norton, Breast Dis., 2008, 29, 27–36.
66 L. Norton, Oncologist, 2005, 10, 370–381.
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