Metal loading of lanthanidopolymers driven by positive cooperativity†

Thi Nhu Y Hoang, Zheng Wang,† Lucille Babel, Homayoun Nozary, Michal Borkovec, Istvan Szilagyi* and Claude Piguet*

This work demonstrates how the thermodynamic loading of monodisperse polymeric single-stranded multi-tridentate receptors of variable lengths is controlled by the nature of the metallic carrier Ln(hfac)_3 (Ln is La, Eu or Y, and hfac is hexafluoroacetetylactonate). Whereas the intrinsic affinity of the tridentate binding site is maximum for medium-sized Eu³⁺ and decreases for Y³⁺, the contraction of the hydrodynamic radius of the polymer upon metal loading induces positive allosteric cooperativity for the smaller cations. The origin of this behaviour is rationalized within the frame of intermetallic dipole–dipole interactions modulated by the solvation potential of dipolar solutes in dielectric materials. Positive cooperativity produces local high-density of metal ions along the ligand strands (metal clustering) with potential interest in energy migration and sensing processes.

Introduction

Wolf-type II metallopolymers correspond to rigid multi-site receptors L, to which the metallic units M closely interact with their backbone upon complexation (Fig. 1).† Assuming that (i) the intersite separation remains essentially invariant during the stepwise intermolecular reactions leading to the microspecies [s_j]-[M_m,L] (eqn (1), [s_j] is a state vector testifying to the exact location of each metal in the associated microspecies, and for which each element s_i = 1 when a metal is bound to site i and s_i = 0 when no metal is coordinated) and (ii) the intermetallic interactions are restricted to nearest-neighbour interactions, the associated free energy change of complexation ΔG_m,L[s_j] only depends on the non-cooperative intrinsic affinity of site i for the entering metal ΔG_i^M = −RT ln(f_i^M) and the free energy of interaction ΔE_ij^MM occurring when two adjacent sites i and j are occupied (Fig. 1).‡

\[L + mM = \{s_j\} \cdot [M_m,L] = f_{m,1}^{ML} \{s_j\} \] (1)

The associated binding isotherms³ predict that larger metal-binding site affinities f_i^M reduce the concentration of free metal required for the quantitative loading of the polymer (Fig. 2a). This trend is further enhanced by the operation of positive allosteric cooperativity (ΔE_ij^MM < 0, Fig. 2b).‡ Please note that positive cooperativity is accompanied by metallic clustering during the loading process, a phenomenon which locally increases the density of metals and finds applications in sensing⁵ and in controlling intermetallic energy migration processes with emissive trivalent lanthanide cations.⁶ The reverse situation holds for anti-cooperativity (ΔE_ij^MM > 0) with the appearance of an intermediate plateau around θ_M = 0.5 where the speciation is dominated by the microspecies with alternating metal-free and metal-occupied sites (Fig. 2b).⁴

Fig. 1 Thermodynamic model for the successive intermolecular connections of metallic units to a one-dimensional multi-site receptor L possessing N available binding sites. f_i^M and ΔG_i^M = −RT ln(f_i^M) are the non-cooperative intrinsic affinity, respectively free energy of connection of site i for the entering metal and ΔE_ij^MM is the free energy of interaction occurring when two adjacent sites i and j are occupied.
Again, luminescent lanthanidopolymers may benefit from this special arrangement for the detection of gases in the empty sites, for the speciations of biologically relevant analytes, and for the implementation of energy-transfer upconversion processes where each activator (usually an Er³⁺ cation) requires two neighbouring metallic sensitizers (usually Yb³⁺ cation). However, the deliberate implementation of these thermodynamic recognition process remains unattainable at the molecular level for pairs of different lanthanide cations and upconverting f-f systems are currently limited to statistically doped ionic solids and nanomaterials.

To the best of our knowledge, a very limited number of Wolf-type-II metallopolymers coded for lanthanide loading have been identified and reported, among which only three multi-site polydisperse receptors L₁, L₂ and L₃ include tridentate binding units, which are able to saturate the coordination spheres of hexacoordinated lanthanide nitrates (Ln(NO₃)₃) and lanthanide hexyfluoroacetylacetonates (Ln(hfac)₃) in the final lanthanidopolymers [L₃(LnX₃)ₚₙ] (Scheme 1).

Whereas [L₁(TbCl₃)]ₚₙ and [L₂(Eu(NO₃)₃)]ₚₙ were prepared by mixing the polymeric receptors with metallic salts under non-stoichiometric conditions for a rough investigation of the optical and liquid crystalline properties of the resulting solid materials, the thermodynamic loading of [L₃(Ln-(hfac)₃)]ₚₙ in dichloromethane with Ln = La, Eu and Y showed minor anti-cooperative intermetallic interactions (0 ≤ ΔE₁₋₂,Ln ≤ 1.4 kJ mol⁻¹), which were too small to induce selective binding at room temperature. A rational tuning of the intermetallic interactions ΔE₁₋₂,Ln is tricky because, except for melting processes occurring in condensed phases, the intermolecular association reaction depicted in eqn (1) strongly depends on solvation effects. This lead Choppin to consider any complexation process as the result of the two successive equilibria (2) and (3), where S are solvent molecules.

\[[L(S)_y]^{x-} + m[Ln(S)_z]^{x+} + (p + q) S \rightarrow [L(S)_y]^{x-} + m[Ln(S)_z]^{x+} + (p + q) S \quad \Delta G_{\text{asso}} \]

Since the global free energy change ΔG_{m,1}^{ln,Ln}(S₀) = ΔG_{\text{desolv}}^{ln,Ln} + ΔG_{\text{asso}}^{ln,Ln} represents the sum of two opposite contributions, ¹⁷

Fig. 2 Binding isotherms computed with eqn (9) and (10) for the metal loading of a linear polymer L with N binding sites showing the influence of (a) the intrinsic metal–ligand affinity ΔGᵢₘ for N → ∞, (b) the nearest neighbour interaction ΔEᵢₘ for N → ∞ (ΔGᵢₘ = −40 kJ mol⁻¹ is fixed) and (c) the number of available binding sites (ΔGᵢₘ = −40 kJ mol⁻¹ and ΔEᵢₘ = 15 kJ mol⁻¹ are fixed).

Scheme 1 Chemical structures of the ligands L₁–L₄.
there is no doubt that the microscopic parameters $\Delta G^{\text{Ln}}_{\text{Ln}} = -RT(\ln M)_{\text{Ln}}$ and $\Delta H^{\text{Ln},\text{Ln}}_{\text{Ln}}$ similarly reflect the competition between solvation effects and intermetallic electrostatic interactions.18 Consequently, the prediction of the magnitude and even of the sign of $\Delta H^{\text{Ln},\text{Ln}}_{\text{Ln}}$ proved to be elusive,19 an assertion illustrated by the opposite trend found for the loading of the oligomeric ligand L_4 which is anticooperative with $\text{Ln(NO}_3)_3$ ($\Delta H^{\text{Ln},\text{Ln}}_{\text{Ln}} > 0$) and cooperative with Ln(hfac)_3 ($\Delta H^{\text{Ln},\text{Ln}}_{\text{Ln}} < 0$, Scheme 1).20 Since the solvation energies of charged molecules, modeled with Born eqn (4),25 or of neutral dipolar molecules, modeled with Onsager eqn (5)22 depend on some power of the inverse of their ionic radius $\kappa^{-\epsilon}$, we reasoned that an increase in the polymer length (and size) might have significant influence on the cooperativity of the lanthanide loading. In eqn (4) and (5), $N_{\text{av}} = 6.023 \times 10^{23}$ mol$^{-1}$ is Avogadro’s number, z is the charge of the particle in electrostatic units, $\epsilon = 1.602 \times 10^{-19}$ C is the elementary charge, $\epsilon_0 = 8.859 \times 10^{-12}$ C2 N$^{-1}$ m$^{-2}$ is the vacuum permittivity, μ is the relative dielectric permittivity, μ is the dipole moment of the particle and R_i is the pseudo-spherical radius of the charged ion for eqn (4) and the radius of a spherical cavity cut from the dielectric when a spherical solute is immersed into the solvent for eqn (5).

$$\Delta_{\text{sol}} G^0 = -N_{\text{av}} \frac{z^2\epsilon^2}{8\pi\epsilon_0 R_i} \left(1 - \frac{1}{\epsilon_1}\right) \quad (4)$$

$$\Delta_{\text{sol}} G^0 = -N_{\text{av}} \frac{\mu^2}{4\pi\epsilon_0 (R_i)^2} \left(\frac{\epsilon_1 - 1}{2\epsilon_1 + 1}\right) \quad (5)$$

We report here on the preparation of linear monodisperse multi-tridentate polymeric receptors L_3^N ($10 \leq N \leq 30$) of increasing sizes, which are reacted with neutral dipolar Ln(hfac)_3 lanthanide carriers ($\text{Ln} = \text{La, Eu and Y}$). The formation of the resulting lanthanidopolymers $[\text{L}_3^N\text{Ln(hfac)}_3]_{\text{Ln}}$ is monitored either by 1H- or by 19F-NMR for extracting the thermodynamic parameters, while Dynamic Light Scattering (DLS) is used for addressing the hydrodynamic diameter in dichloromethane solutions. A special emphasis is put on the correlations between the change in hydrodynamic diameter of the lanthanidopolymers $[\text{L}_3^N\text{Ln(hfac)}_3]_{\text{Ln}}$ upon metal loading and the sign and magnitude of the intermetallic interactions $\Delta E^{\text{Ln},\text{Ln}}_{\text{Ln}}$.

Results and discussion

Synthesis and characterization of the polymeric multi-tridentate receptors L_3^N

The receptors L_3^N are obtained by Suzuki-type coupling reactions between 2,6-bis-[1-(3-methylbutyl)]-5-bromo-benzimidazol-2-yl)pyridine (1)23 and 2,5-dihydroxy-1,4-diboronic acid (2)24 in the presence of $\text{Pd(PPh}_3)_4$ as catalyst and CsF as base (Scheme 2).25 Polymerization is stopped by the successive addition of bromobenzene and phenylboronic acid, which act as terminating agents. Depending on the solvent used, the reaction time and the concentration of the reactants, the degree of polymerization, as estimated by the weight average molecular weight M_w deduced from gel permeation chromatography (GPC), varies by a factor three ($7500 \leq M_w \leq 22 000$ g mol$^{-1}$), while the polydispersity indexes $I_p = M_w/M_n$ span the 1.03–1.6 range (M_n is the number average molecular weight, Table S1 in the ESI†). In order to prepare sufficient quantities of three different oligomers with N values stepwise incremented by approximately ten units (Table 1), we performed large scale reactions under the empirical conditions identified (Table S1†) for the preparation of monodisperse L_3^{N-12} (dioxane/ethanol (3 : 1); $I_p = 1.13$), L_3^{N-20} (dioxane/ethanol (3 : 1); $I_p = 1.16$), and L_3^{N-31} (toluene/ethanol (3 : 1); $I_p = 1.25$). Gel permeation chromatography (GPC) in tetrahydrofuran displayed symmetrical traces compatible with narrow distributions of the oligomers around their weight average molecular weight M_w (Fig. S1 in the ESI†), a value which is used for estimating the number of repeating units by using eqn (6) ($M_0 = 726$ g mol$^{-1}$ is the molecular weight of a repeating unit and $ew = 77$ g mol$^{-1}$ is the excess molecular weight brought by the terminating agent approximated as one phenyl ring, Table 1).14

$$N_w = \frac{M_w - ew}{M_0} \quad (6)$$

Concentration-dependent static light scattering (SLS) experiments performed on dichloromethane solutions of the three polymers L_3^{N-12}, L_3^{N-20} and L_3^{N-31} yielded similar molecular weights as the GPC method (Table 1 and Fig. S2 and S3†). For L_3^{N-12}, the molecular weight is probably underestimated by SLS since one works close to detection limit of our setup. Finally, the 1H NMR spectra of L_3^{N-12}, L_3^{N-20} and L_3^{N-31} point to the expected alternation of one phenyl spacer with one tri-
dentate binding along the strand, thus leading to a ratio for the integrated diagnostic signals close to 1.0 (Fig. S4 in the ESI†), in agreement with the structure of the polymer L3 with depicted in Scheme 2.

Thermodynamic loading of the polymeric multi-tridentate receptors L3 with [Ln(hfac)3(dig)]

Theoretically, the free energy change $\Delta G_{m}^{ML}(s_i)$ accompanying the complexation of a multi-site L receptor in the microspecies $s_i[M_m,L_i]$ (equation (1) and Fig. 1) is given by eqn (7), where f_i^M corresponds to the non-cooperative intrinsic affinity of site i for the entering metal and ΔE_i^{ML} stands for the free energy of interaction occurring when two adjacent sites i and j are occupied.

$$\Delta G_{m}^{ML}(s_i) = -\sum_{i=1}^{N} RT \ln(f_i^M) s_i + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \Delta E_{ij}^{ML} s_i s_j$$ \quad (7)

Application of the vant'Hoff equation transforms the free energy change $\Delta G_{m}^{ML}(s_i)$ into the formation constant $\beta_m^{ML}(s_i)$ for each microspecies $s_i[M_m,L_i]$ (eqn (8)). The combination of all the microconstants possessing the same total number m of bound metals ultimately gives the target macroconstant $\beta_m^{ML} = \sum_{[s_i]} \beta_m^{ML}(s_i)$, which is familiar to coordination chemists.

$$\beta_m^{ML}(s_i) = \prod_{i=1}^{N} \left(f_i^M \right)^{s_i} \prod_{i=1}^{N} \prod_{j=i+1}^{N} \left(\exp(-\Delta E_{ij}^{ML}/RT) \right)^{s_i s_j}$$ \quad (8)

By computing the semigrand partition function Ξ, one can deduce the macroconstants β_m^{ML} of a linear polymer possessing N binding sites from f_i^M and from the Boltzmann factor representing the intercomponent interaction $u_{ij}^{ML} = \exp(-\Delta E_{ij}^{ML}/RT)$ with the matrix transfer formalism according to eqn (9), where $T_{V_1} = (1 \text{ 1 \text{ } 1)$ and $T_{V_2} = (1 \text{ 0 \text{ } 0)$ are the transposed terminating and generating vectors, respectively.\2

$$\Xi = \sum_{m=0}^{N} \beta_m^{ML}[M]_m = T_{V_1} \left(\frac{1}{f_1^M[M]} \right) T_{V_2} \left(\frac{1}{f_1^M[M]_m[M]} \right) V_t$$ \quad (9)

The degree of metalation $\theta_M = \langle m \rangle/N$, better known in coordination chemistry as the occupancy factor, which corresponds to the average of bound metal per binding site, is related to the binding polynomial $\Xi = \sum_{m=0}^{N} \beta_m^{ML}[M]_m$ by a simple derivative in eqn (10).

$$\theta_M = \frac{\langle m \rangle}{N} = \frac{1}{N} \frac{d \ln(\Xi)}{d \ln([M])} = \frac{1}{N} \frac{\sum_{m=0}^{N} m \beta_m^{ML}(M)}{\sum_{m=0}^{N} \beta_m^{ML}(M)}$$ \quad (10)

Experimentally, the titrations of the polymers L3 with [Ln(hfac)3(dig)] (Ln = La, Eu, Y; hfac = hexafluoroacetylacetonate, dig = diglyme = 1-methoxy-2-(2-methoxyethoxy)ethane)\26 were conducted in dichloromethane containing a fixed concentration of diglyme ([dig]tot = 0.15 mol dm$^{-3}$) and monitored by 1H-NMR (Ln = La, Y; Fig. 3) and 19F-NMR at 293 K (Ln = Eu; Fig. S3 in the ESI†). In these conditions, the ligand exchange equilibria (11) reduce to conditional stability constants $\beta_{m,1,cond}^{Ln,L3}$ (eqn (12)), which are adapted for being analysed within the frame of the site-binding model with the help of eqn (7)–(10).\14 Since no significant dissociation of the metallic salts occurs in dichloromethane at submillimolar concentrations,\14 [Ln(hfac)3(dig)] exists as a single species in solution during the NMR titrations, the concentration of which is written as [Ln] for the rest of this work.

$$\text{L3}^N + m[Ln(hfac)_3] \rightarrow [\text{L3}^N(Ln(hfac)_3)_m] + m\text{dig}$$ \quad (11)

For each point of the titration, the NMR spectra are recorded at thermodynamic equilibrium and the intensity of signals of a given nucleus (e.g., proton), neighboring to the free tridentate site (β_t^L), can be compared with that of the same nucleus, but connected to a bound site ($\beta_{b,L}^L$). Since the total concentration of metal [Ln]$_{tot}$ and of polymer [L3]$_{tot}$, known at each point of the titration, the amount of bound [Ln]$_{bound}$ (eqn (13)) and free [Ln] (eqn (14)) metal are experimentally accessible together with the degree of metalation θ_{Ln} (eqn (15)) plotted in Fig. 4 and Fig. S6 (in the ESI†).\27

$$[\text{Ln}]_{bound} = \left(\frac{\theta_L^H - \theta_L^L}{\theta_L^H + \theta_L^L} \right) N [\text{L3}^N]_{tot}$$ \quad (13)
\[
\text{[Ln]} = \text{[Ln]}_{\text{tot}} - \text{[Ln]}_{\text{bound}} \quad (14)
\]

\[
\theta_{\text{Ln}} = \frac{m}{N} = \frac{1}{N} \frac{[\text{Ln}]_{\text{bound}}}{[\text{L}3^{N}]_{\text{tot}}} = \frac{I_{p-\text{ln}}}{I_{F-\text{ln}}} \quad (15)
\]

As expected from previous investigations with the monomeric tridentate binding unit, DOSY NMR experiments unambiguously establish the operation of the minor competitive equilibrium (16) for \(\text{Ln} = \text{Eu} \), in line with the release in solution of minor quantities of \([\text{Ln(hfac)}_3]^{-}\) for the smaller lanthanides (\(\text{Ln} = \text{Eu} \) in Fig. S5 and \(\text{Ln} = \text{Y} \) in Fig. S7 in the ESI†).

\[
\text{[L}3^{N}\langle\text{Ln(hfac)}_3\rangle_m\rangle + [\text{Ln(hfac)}_3]_{\text{dig}} = [\text{L}3^{N}\langle\text{Ln}_m(\text{hfac})_{3-m-1}\rangle]^{-1} + [\text{Ln(hfac)}_4]^{-} + \text{dig} \quad (16)
\]

Reasonably assuming that \([\text{Ln}] = [\text{Ln(hfac)}_3]_{\text{dig}} + [\text{Ln(hfac)}_3]_{\text{m}}\) and \([\text{Ln}]_{\text{bound}} = [\text{L}3^{N}\langle\text{Ln(hfac)}_3\rangle_m\rangle + [\text{L}3^{N}\langle\text{Ln}_m(\text{hfac})_{3-m-1}\rangle]^{-1}\) for a global analysis of the polymer loading, the resulting binding isotherms for \(\text{Ln} = \text{La, Eu and Y} \) (Fig. 4) can be satisfactorily fitted to eqn (9) and (10) by using non-linear least squares methods to give the conditional intrinsic affinities \(\Delta G_{\text{ln,cond}}^{\text{Ln}} = -RT\langle f_{\text{ln,cond}}^\text{Ln}\rangle \) and intermetallic interactions \(\Delta E_{\text{ln,ln}}^{\text{Ln}} = -RT\langle u_{\text{ln,ln}}^\text{Ln}\rangle \) gathered in Table 2 and graphically illustrated in Fig. 5.

Inspection of the binding isotherms immediately shows that the metal loading is strongly influenced by the size of the lanthanide (Fig. 4), whereas the length of the polymer has only minor effects (Fig. S6 in the ESI†). The bell-shaped trend found for the intrinsic affinities \(\Delta G_{\text{ln,cond}}^{\text{Ln}} > \Delta G_{\text{Eu,cond}}^{\text{Eu}} < \Delta G_{\text{Y,cond}}^{\text{Y}} \) along the lanthanide series (Fig. 5a) mirrors that reported for...
Table 2 Thermodynamic conditional intrinsic affinities $\Delta G_{\text{N,cond}}^L = -RT \ln f_{\text{N,cond}}^L$ and intermetallic interactions $\Delta E_{1-2}^{\text{La}} = -RT \ln \mu_{1-2}^{\text{La}}$ obtained by NMR titrations of $L3^{N=12}$, $L3^{N=20}$ and $L3^{N=31}$ with [Ln(hfac)$_3$]diglyme (Ln = La, Eu, Y; CD$_2$Cl$_2$ + 0.15 mol dm$^{-3}$ diglyme at 293 K$^\circ$)

<table>
<thead>
<tr>
<th>Ln</th>
<th>Polymer</th>
<th>$f_{N,\text{cond}}^L$</th>
<th>$a_{N,\text{Ln}}^{La}$</th>
<th>$\Delta G_{N,\text{cond}}^L / \text{kJ mol}^{-1}$</th>
<th>$\Delta E_{1-2}^{\text{La}} / \text{kJ mol}^{-1}$</th>
<th>AFb</th>
<th>$f_{N,\text{Ln}}^L$</th>
<th>$\Delta G_{N}^{\text{La}} / \text{kJ mol}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>$L3^{N=12}$</td>
<td>35.6(1.2)</td>
<td>0.77(3)</td>
<td>$-8.7(1)$</td>
<td>0.63(8)</td>
<td>0.043</td>
<td>5.3(2)</td>
<td>$-4.08(8)$</td>
</tr>
<tr>
<td>La</td>
<td>$L3^{N=20}$</td>
<td>21.4(6)</td>
<td>1.08(5)</td>
<td>$-7.5(1)$</td>
<td>$-0.19(6)$</td>
<td>0.026</td>
<td>3.2(1(8)</td>
<td>$-2.84(6)$</td>
</tr>
<tr>
<td>La</td>
<td>$L3^{N=31}$</td>
<td>24.5(6)</td>
<td>0.99(3)</td>
<td>$-7.8(1)$</td>
<td>0.03(6)</td>
<td>0.037</td>
<td>19.8(7)</td>
<td>$-3.17(6)$</td>
</tr>
<tr>
<td>Eu</td>
<td>$L3^{N=12}$</td>
<td>132(5)</td>
<td>1.67(6)</td>
<td>$-11.9(1)$</td>
<td>$-1.25(9)$</td>
<td>0.036</td>
<td>20.4(7)</td>
<td>$-7.35(9)$</td>
</tr>
<tr>
<td>Eu</td>
<td>$L3^{N=20}$</td>
<td>136(5)</td>
<td>1.83(7)</td>
<td>$-12.0(1)$</td>
<td>$-1.47(9)$</td>
<td>0.045</td>
<td>14.1(6)</td>
<td>$-6.45(11)$</td>
</tr>
<tr>
<td>Eu</td>
<td>$L3^{N=31}$</td>
<td>94(4)</td>
<td>1.61(7)</td>
<td>$-11.3(2)$</td>
<td>$-1.16(11)$</td>
<td>0.044</td>
<td>12.6(6)</td>
<td>$-6.18(11)$</td>
</tr>
<tr>
<td>Y</td>
<td>$L3^{N=12}$</td>
<td>84.3(3.7)</td>
<td>1.91(8)</td>
<td>$-10.8(2)$</td>
<td>$-1.58(11)$</td>
<td>0.044</td>
<td>5.6(3)</td>
<td>$-4.20(11)$</td>
</tr>
<tr>
<td>Y</td>
<td>$L3^{N=20}$</td>
<td>37.4(1.7)</td>
<td>2.53(12)</td>
<td>$-8.8(2)$</td>
<td>$-2.26(11)$</td>
<td>0.044</td>
<td>5.2(2)</td>
<td>$-4.00(11)$</td>
</tr>
<tr>
<td>Y</td>
<td>$L3^{N=31}$</td>
<td>34.5(1.5)</td>
<td>2.56(11)</td>
<td>$-8.6(2)$</td>
<td>$-2.29(11)$</td>
<td>0.044</td>
<td>5.2(2)</td>
<td>$-4.00(11)$</td>
</tr>
</tbody>
</table>

a The quoted uncertainties correspond to those estimated during the non-linear least-squares fits. b Agreement factor $AF = \frac{\sum (\epsilon_{\text{obs}} - \epsilon_{\text{cal}})^2}{\sum \epsilon_{\text{obs}}^2}$ stands for the intrinsic affinity of the ligand exchange reaction (12).

Fig. 5 Variation of the (a) intrinsic affinities $\Delta G_{N,\text{cond}}^L = -RT \ln f_{N,\text{cond}}^L$ and (b) intermetallic interactions $\Delta E_{1-2}^{\text{La}} = -RT \ln \mu_{1-2}^{\text{La}}$ along the lanthanide series for the metallic loading of the three polymers $L3^{N=12}$ (black), $L3^{N=20}$ (red) and $L3^{N=31}$ (green) versus the inverse of the nine-coordinate lanthanide ion radii (CD$_2$Cl$_2$ + 0.15 mol dm$^{-3}$) at 293 K$^\circ$.

Dynamic light scattering analysis of the metal loading of the polymeric multi-tridentate receptors $L3^{N}$ with [Ln(hfac)$_3$]diglyme

The interpretation of the neighbouring intermetallic interactions can be approached by the Born–Haber cycle depicted in Fig. 6 and summarized with eqn (17). The selected complexity process refers to the addition of one lanthanide carrier [Ln(hfac)$_3$]$_i$ to a $[L3^{N}(\text{Ln(hfac)})]_i$ microspecies to give $[L3^{N}(\text{Ln(hfac)})]_{i+1}$, in which the total intermetallic interactions increases by a single $\Delta E_{1-2}^{\text{Ln}}$ contribution.

$$\Delta G_{K_{n+1}\text{-gas}}^{\text{La}} = \Delta G_{K_{n+1}\text{-sol}}^{\text{La}} - \Delta \text{sub} \cdot G_x^{\text{La-Ln}}_{\text{Ln-Ln}} - \Delta \text{sub} \cdot G_x^{\text{La-Ln}}_{\text{Ln-Ln}} + \Delta \text{sub} \cdot G_x^{\text{La-Ln}}_{\text{Ln-Ln}}$$

(17)

The application of the site-binding model (eqn (7) and (8)) to the K_{n+1} successive stability microconstant in the gas phase leads to $\Delta G_{K_{n+1}\text{-gas}} = -RT \ln f_{1-2}^{\text{Ln}} + \Delta E_{1-2}^{\text{Ln}}$, where the latter intermetallic interaction $\Delta E_{1-2}^{\text{Ln}}$, can be approximated by the interaction between two electric dipoles (eqn (18), θ is the...
angle between the dipole vectors25b produced by two adjacent
\([N_3]_n\text{Ln(hfac)}_3\] complexes \([N_3\text{ stands for a tridentate binding unit}]\) separated by \(R_{\text{Ln-Ln}} \approx 1.2-1.5\) nm in the polymers \(L_3^{N,25b}\). Since \(\mu_{\text{dip}} \leq 0.5\) Debye for \(\text{Ln(hfac)}_3\) adducts,27 eqn (17) predicts \(|\Delta E_{1-2,\text{gas}}^{\text{Ln,Ln}}| < 20\) J mol\(^{-1}\) in vacuum with negligible variations along the lanthanide series.

\[
\Delta E_{1-2,\text{gas}}^{\text{Ln,Ln}} = N_{\text{av}} \frac{\mu_1 \mu_2 (1 - 3 \cos^2 \theta)}{4 \pi \epsilon_0 \epsilon_r (R_{\text{Ln-Ln}})} \tag{18}
\]

The use of the Onsager eqn (5) for modelling the solvation energies \(\Delta_{\text{solv}} G^0\) transforms eqn (17) into eqn (19), where we recognize that the minor variation in size of the trivalent lanthanide \(R_{\text{La}} > R_{\text{Eu}} > R_{\text{Y}}\) within the various tris(beta-diketo-nate) carriers has no significant influence. On the contrary, the changes in the global size of the polymer upon metal loading may affect the last two terms of eqn (19).

\[
\Delta E_{1-2,\text{gas}}^{\text{Ln,Ln}} = \Delta E_{1-2,\text{gas}}^{\text{Ln,Ln}} - RT \ln \left(\frac{f_{1\text{gas}}}{f_{1\text{solid}}}\right) + \frac{N_{\text{av}}}{4 \pi \epsilon_0 \epsilon_r} \left(\frac{\epsilon_r - 1}{2 \epsilon_r + 1}\right)
\times \left[\frac{\mu_{\text{Ln}}^2}{(R_{\text{H,Ln}})} + \frac{\mu_{\text{M,Ln}}^2}{(R_{\text{H,Ln}})} - \frac{\mu_{\text{M,Ln}}^2}{(R_{\text{H,M,Ln}})_{n_{\text{init}}}}\right] \tag{19}
\]

In this context, it is well-known that the meridional complexation of the tridentate 2,6-bis(benzimidazol-2-yl)pyridine binding units found in the polymers \(L_3^N\) is accompanied by a drastic structural change from a linear \(\text{trans}–\text{trans}\) conformation in the free site (right part of the structure in Fig. 6) toward a bent \(\text{cis}–\text{cis}\) conformation in its coordinate counterpart (left part of the structure in Fig. 6).38 The repetition of this structural change upon successive metal loading affects the global geometries and sizes of the lanthanidopolymers \([L_3^N\text{Ln(hfac)}_3]_n\). NMR DOSY experiments in absence of high-gradient fields are not accurate enough to detect the latter size variations in the lanthanidopolymers, but DLS measurements performed during the titration of \(L_3^N\) with \([\text{Ln(hfac)}_3\text{dig}]\) in dichloromethane indeed provided the reliable hydrodynamic diameters as depicted in Fig. 7 and Fig. S9 and S10 (ESI†).

We observe a monotonous increase in hydrodynamic diameters from \(L_3^{\text{Y}} = 12\) (3.9(2) nm, Fig. S9†) to \(L_3^{\text{Eu-Eu}} = 4.7(1)\) nm, Fig. 7) and \(L_3^{\text{Eu-La}} = 6.1(2)\) nm, Fig. S10†), which can be analyzed within the framework of Kuhn theory for a Gaussian chain summarized in eqn (20), where \(R_0\) is the hydrodynamic radius, \(R_{\text{H}}\) is the end-to-end distance of the polymer considered as a flexible chain made up of rigid segments of Kuhn length \(l_0 = 1.56\) nm is the length of the monomer measured in its crystal structure14 and \(N\) is the number of monomers, i.e. the degree of polymerization in \(L_3^N\).12,33

\[
R_{\text{H}} = \sqrt{3 \pi \frac{l_0}{128}} = \sqrt{3 \pi \frac{l_0}{128}} N = \sqrt{3 \pi l_0^0} N \tag{20}
\]

Despite the relatively low number of monomers, the plot of \(R_{\text{H}}\) versus \(N\) displayed the expected square root dependence for a Gaussian chain (Fig. S11†), from which a Kuhn length of \(l_0 = 2.58(7)\) nm can be estimated. Our polymers \(L_3^N\) are relatively flexible, since the Kuhn length is comparable to the monomer length. This flexibility can be explained by the large monomer unit. However, the most important point concerns the global invariance of the size of the \([L_3^N\text{Ln(hfac)}_3]_n\) polymers upon loading with mid-range \(\text{Ln} = \text{Eu}\) (Fig. 7b, S9b and S10b†), whereas the use of a smaller cation \(\text{Ln} = \text{Y}\) leads to contraction (Fig. 7c, S9e and S10c†) while a larger cation \(\text{Ln} = \text{La}\) (Fig. 7a, S9a and S10a†) produces an upward concave trace diagnostic for an overall size increase. The introduction of these trends into eqn (19) predicts that the decrease in size observed upon the successive complexation of the smaller lanthanides (\(\text{Ln} = \text{Eu} = \text{Y}\), i.e. \(R_{\text{H,Ln,Ln}} > R_{\text{H,Ln,Ln}}\)) favours
positive cooperativity ($\Delta E_{1-2,\text{sol}}^{L_{1} \text{La}} < 0$), while the increase in size found $\text{Ln} = \text{La}$ promotes anti-cooperativity ($\Delta E_{1-2,\text{sol}}^{L_{2} \text{Eu}} > 0$). The experimental results $0 \approx \Delta E_{1-2,\text{sol}}^{L_{1} \text{La}} < \Delta E_{1-2,\text{sol}}^{L_{1} \text{Eu}} < \Delta E_{1-2,\text{sol}}^{L_{2} \text{Eu}} < \Delta E_{1-2,\text{sol}}^{L_{2} \text{Y}}$ (Fig. 5b) fairly match this trend whatever the length of the receptors.

Conclusion

The optimization of the Suzuki coupling reactions between the tridentate binding units 1 and the lipophilic bridges 2 provides close to monodisperse polymers of various length L_3^N ($N = 10–30$), the distribution of which is compatible with the thermodynamic and structural investigation of their metal loading in solution with the help of NMR and light scattering titrations. In line with the monomer, the non-cooperative intrinsic thermodynamic affinity of each tridentate site in the polymer for the entering lanthanide carrier, Ln(hfac)$_3$, display a bell-shaped trend with a maximum avidity for mid-sized lanthanides. However, the nearest-neighbour intermetallic interactions unambiguously point to an increase of the affinity of the binding sites for successive loadings with small lanthanides (positive cooperativity), whereas $\text{Ln} = \text{La}$, the largest metal of the series, exhibits roughly statistical behaviour. The length of the polymer has little, if any, influence on the lanthanide loading. Dynamic light scattering measurements indicate that (i) the lanthanidopolymers show no trend towards aggregation and (ii) positive cooperativity is correlated with the contraction of the polymer upon metal loading, an effect assigned to solvation effects. Though modest in term of absolute magnitude and comparable with thermal energy ($RT \approx 2.5$ kJ mol$^{-1}$ at room temperature), the attractive intermetallic interactions $\Delta E_{1-2,\text{sol}}^{L_{1} \text{Eu}}, \Delta E_{1-2,\text{sol}}^{L_{1} \text{Eu}} > 0$ and $\Delta E_{1-2,\text{sol}}^{L_{2} \text{Y}} < 0$ measured in L_3^N do not produce exploitable metal clustering, but they pave the way for producing larger effects by simply increasing the local dipole moments of the lanthanide carriers which contribute to the solvation effects via the square of their norms. The use of unsymmetrical beta-diketonate in the lanthanide carriers is known to increase the dipole moment by at least one order of magnitude,27 and therefore both intermetallic gas-phase interactions (eqn (18)) and solvation energies (eqn (5)) might be modified by two or more orders of magnitude.

Experimental

Solvents and starting materials

These were purchased from Strem, Acros, Fluka AG and Aldrich and used without further purification unless otherwise stated. 2,6-Bis-[1-(3-methylbutyl)-5-bromo-benzimidazol-2-yl]-pyridine (1)23 and 2,5-dihexyloxy-1,4-diboronic acid (2)24 were prepared according to literature procedures. The hexafluoroacetylacetone salts [Ln(hfac)$_3$(diglyme)] were prepared from the corresponding oxide (Aldrich, 99.99%).26 Acetonitrile and dichloromethane were distilled over calcium hydride.

Preparation of polymers $L_3^{N_{12}}$ and $L_3^{N_{20}}: 2,6-Bis-[1-(3-methylbutyl)-5-bromo-benzimidazol-2-yl]pyridine (1, 3 g, 4.9 mmol), 2,5-dihexyloxy-1,4-diboronic acid (2, 1.8 g, 4.9 mmol) and CsF (4.5 g, 29.4 mmol) were dissolved in degassed dioxane/EtOH (3/1, 120 mL). The solution was saturated with argon for 30 min before adding Pd[PPh$_3$]$_4$ (566 mg, 0.49 mmol, 1 equiv.) followed by CsF (4.5 g, 29.4 mmol) and CsF (4.5 g, 29.4 mmol) as a function of the occupancy factor n_L, for lanthanide loadings with (a) [La(hfac)$_3$(diglyme)] and (b) [Eu(hfac)$_3$(diglyme)] and (c) [Y(hfac)$_3$(diglyme)] (CH$_2$Cl$_2$ + 0.15 mol dm$^{-3}$ diglyme at 293 K). The trendlines are only guides for the eyes.

![Fig. 7 Hydrodynamic diameters for the lanthanidopolymers L_3^{N_{12}}(Ln{(hfac)}_3)_n as a function of the occupancy factor n_L, for lanthanide loadings with (a) [La(hfac)_3(diglyme)] and (b) [Eu(hfac)_3(diglyme)] and (c) [Y(hfac)_3(diglyme)] (CH_2Cl_2 + 0.15 mol dm^-3 diglyme at 293 K). The trendlines are only guides for the eyes.](image-url)
dropwise into methanol (800 mL) to give a pale brown solid (2.23 g, \(M_\text{w} = 12 \, 924 \) g mol\(^{-1}\), \(I_p = 1.31 \), Fig. S12, ESIF). This process was repeated to yield 1.59 g of polymer (\(M_\text{w} = 12 \, 630 \) g mol\(^{-1}\), \(I_p = 1.22 \), Fig. S12)]. The latter solid was dissolved in 50 ml of chloroform, and methanol was dropwise added (reverse precipitation) until an important quantity of solid was obtained, filtered and dried under vacuum (1.30 g, \(M_\text{w} = 11 \, 539 \) g mol\(^{-1}\), \(I_p = 1.13 \), Fig. S12)]. The process of reverse precipitation was repeated to give L3\(^{\text{N-31}} \) (835 mg, \(M_\text{w} = 14 \, 759 \) g mol\(^{-1}\), \(I_p = 1.16 \), Fig. S12)]. The filtrate was evaporated and dried under a vacuum to yield L3\(^{\text{N-31}} \) (320 mg, \(M_\text{w} = 8743 \) g mol\(^{-1}\), \(I_p = 1.13 \), Fig. S12)].

Preparation of polymer L3\(^{\text{N-31}} \), 2,6-Bis-[1-(3-methylbutyl)-5-bromo-benzimidazol-2-yl]pyridine (1, 1 g, 1.63 mmol), 2,5-di-4-hexyloxy-1,4-diboronic acid (2, 600.7 mg, 1.63 mmol) and CsF (2.59 g, 16.6 mmol) were dissolved in degassed tolene/ethanol (3/1, 20 mL). The solution was saturated with argon for 30 min before adding Pd(PPh\(_3\))\(_4\) (188.7 mg, 1.63 mmol, 1 equiv.). The reaction mixture was then stirred under argon at 80 °C for 3 days. The polymerization was completed with the addition of bromobenzene (256.4 mg, 1.63 mmol, 1 equiv.), followed 24 h later with the addition of phenylboronic acid (203.7 mg, 1.63 mmol, 1 equiv.). The final mixture was stirred for 24 h at 80 °C and the solvents were removed. The residue was dissolved in chloroform (200 mL), and the organic phase successively washed with brine (3 × 100 mL) and water (150 mL). The organic layer was dried (Na\(_2\)SO\(_4\)), filtered, and evaporated to dryness. The solid was dissolved in a minimum amount of chloroform, then poured dropwise into methanol (800 mL) to give a pale brown solid. Centrifugation followed by decantation and drying gave L3\(^{\text{N-31}} \) (235 mg, \(M_\text{w} = 22 \, 456 \) g mol\(^{-1}\), \(I_p = 1.248 \)) as a pale brown solid.

Spectroscopic measurements

\(^1\text{H} \), \(^{13}\text{F} \) and \(^{13}\text{C} \) NMR spectra were recorded at 293 K on a Bruker Avance 400 MHz spectrometer. Chemical shifts are given in ppm with respect to TMS \((^1\text{H})\) or C\(_6\)F\(_6\) \((^{19}\text{F})\). DOSY-NMR data used the pulse sequence implemented in the Bruker program ledbpgp2s\(^{20}\) which employed stimulated echo, bipolar gradients and longitudinal eddy current delay as the z filter. The four 2 ms gradient pulses had sine-sbell shapes and amplitudes ranging linearly from 2.5 to 50 G cm\(^{-1}\) in 32 steps. The diffusion delay was in the range 60–140 ms depending on the analyte diffusion coefficient, and the number of scans was 32. The processing was done using a line broadening of 5 Hz and the diffusion coefficients were calculated with the Bruker processing package.

Gel permeation chromatography (GPC)

The absolute molecular weights of the polymer were determined from THF solution at 303 K by using a Viscotek TDAmax quadruple detectors array incorporating refractive index, light scattering, viscosimeter and UV detectors.

Static and dynamic light scattering measurements

Light scattering measurements were performed at a scattering angle of 173° with the Zetasizer ZS (Malvern Instruments) at a wavelength of 633 nm. The molecular weight \(M_\text{w} \) was determined by SLS means of the relation \(KC/R = 1/M_\text{w} \) where \(C \) was the mass concentration, \(R \) the Rayleigh ratio, and \(K \) an optical constant. The scattering intensity of the sample, from which the solvent contribution was subtracted, was converted to the Rayleigh ratio by means of the scattering intensity of toluene and its known Rayleigh ratio.\(^{40}\) Due to the low molecular weight of the polymers, any contributions from the form factor at the scattering angle used could be neglected. The concentrations of 1–3 g L\(^{-1}\) used were sufficiently small, such that contributions from polymer–polymer interactions were negligible. The refractive index increment (Fig. S2†), which was needed to obtain the optical constant, was measured with a refractometer (Abbemat, Anton Paar) at the same wavelength. DLS was carried out at concentrations of 3 g L\(^{-1}\) and the hydrodynamic diameter was extracted by second order cumulant analysis and using the respective viscosities of the solvent.

Acknowledgements

Financial support from the Swiss National Science Foundation is gratefully acknowledged. ZW thanks the program of China Scholarship Council (no. 2011842681) for financial support.

References

For ¹⁹F-NMR titration, the integrations of the signals refer to the concentration of free (N₄₄) and bound (N₄₃₄) metal, instead of those of free and bound sites obtained by ¹⁹H-NMR. Eqn (13)–(15) must be replaced with [Ln] = [Ln]bulk + [Ln]bound = (N₄₄ + N₄₃₄) [Ln]bulk and θ₄₄ = (m) / N [L₃]bulk = (N₄₄ + N₄₃₄) [Ln]bulk / N[L₃]bulk.

The experimental diffusion coefficients obtained in CD₂Cl₂ + 0.15 mol dm⁻³ diglyme at 293 K are D = 5.3(2) × 10⁻¹⁰ m² s⁻¹ for [Eu(hfac)₄]⁻, D = 4.7(5) × 10⁻¹⁰ m² s⁻¹ for [Eu(hfac)₃dig]⁻ and D = 1.6(2) × 10⁻¹⁰ m² s⁻¹ for [L₃N₄₄(Nhfac)₄]⁻.

In ref. 14, the preliminary thermodynamic analysis of the lanthanide loading of the polydisperse L₃³⁺N₄₄³⁺ polymer neglected (i) partial dissociation of hfac anions (eqn (17)) and (ii) the presence of 19% of inactive material in the sample. A careful re-examination of the corrected binding isotherm in Fig. S8 in the ES† gives ΔG_N₄₄[N₄₄] = −RT ln(N₄₄[N₄₄]) = −12.1 kJ mol⁻¹ and ΔG_{Eu,N₄₄} = −RT ln(N_{Eu,N₄₄}) = −1.2 kJ mol⁻¹ in line.
with the data collected on the monodisperse polymers $L_3^{N=12}$, $L_3^{N=20}$ and $L_3^{N=31}$.

