Issue 6, 2015

Classification of solar cells according to mechanisms of charge separation and charge collection

Abstract

In the last decade, photovoltaics (PV) has experienced an important transformation. Traditional solar cells formed by compact semiconductor layers have been joined by new kinds of cells that are constituted by a complex mixture of organic, inorganic and solid or liquid electrolyte materials, and rely on charge separation at the nanoscale. Recently, metal organic halide perovskites have appeared in the photovoltaic landscape showing large conversion efficiencies, and they may share characteristics of the two former types. In this paper we provide a general description of the photovoltaic mechanisms of the single absorber solar cell types, combining all-inorganic, hybrid and organic cells into a single framework. The operation of the solar cell relies on a number of internal processes that exploit internal charge separation and overall charge collection minimizing recombination. There are two main effects to achieve the required efficiency, first to exploit kinetics at interfaces, favouring the required forward process, and second to take advantage of internal electrical fields caused by a built-in voltage and by the distribution of photogenerated charges. These principles represented by selective contacts, interfaces and the main energy diagram, form a solid base for the discussion of the operation of future types of solar cells. Additional effects based on ferroelectric polarization and ionic drift provide interesting prospects for investigating new PV effects mainly in the perovskite materials.

Graphical abstract: Classification of solar cells according to mechanisms of charge separation and charge collection

Supplementary files

Article information

Article type
Perspective
Submitted
08 Nov 2014
Accepted
23 Dec 2014
First published
06 Jan 2015

Phys. Chem. Chem. Phys., 2015,17, 4007-4014

Author version available

Classification of solar cells according to mechanisms of charge separation and charge collection

T. Kirchartz, J. Bisquert, I. Mora-Sero and G. Garcia-Belmonte, Phys. Chem. Chem. Phys., 2015, 17, 4007 DOI: 10.1039/C4CP05174B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements