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Highly-efficient dye-sensitized solar cells with
collaborative sensitization by silyl-anchor and
carboxy-anchor dyes†

Kenji Kakiage,a Yohei Aoyama,a Toru Yano,*a Keiji Oya,a Jun-ichi Fujisawab and
Minoru Hanaya*b

In dye-sensitized solar cells co-photosensitized with an alkoxysilyl-

anchor dye ADEKA-1 and a carboxy-anchor organic dye LEG4, LEG4

was revealed to work collaboratively by enhancing the electron

injection from the light-excited dyes to the TiO2 electrodes, and the

cells exhibited a high conversion efficiency of over 14% under one

sun illumination.

Dye-sensitized solar cells (DSSCs), which are composed of meso-
porous nanocrystalline-TiO2 thin layers modified with photo-
sensitizing dyes as working electrodes, redox electrolytes and
counter electrodes, have been actively investigated as photo-
voltaic devices in the next generation of alternatives to conven-
tional silicon-based inorganic solar cells (Fig. S1, ESI†), because
of their potentially low production costs, shorter energy and
CO2 payback times, low toxicity of the constituent elements and
relatively high light-to-electric energy conversion efficiencies
(Z) especially under low-light intensities and scattered light
conditions.1–4 In DSSCs, Z values of 11–13% under the simu-
lated sunlight of one sun have been reported up to now through
photosensitization using polypyridyl and porphyrin complexes of
metals such as ruthenium or zinc, and a few metal-free organic
dyes with carboxy-anchor moieties for binding to the surface of
the TiO2.1–9

Organosilicon compounds such as silanols and alkoxysilanes
have high metal-oxide surface bonding abilities by forming
strong Si–O–metal bonds. While paying attention to the char-
acteristics of silanols and alkoxysilanes, we have focused on the
development of photosensitizing dyes for DSSCs possessing
silyl-anchor moieties,10–12 and recently we succeeded in achiev-
ing over 12% conversion efficiency in cells using a carbazole/
alkyl-functionalized oligothiophene/alkoxysilyl-anchor moiety
type compound, ADEKA-1 (Fig. 1a), as the photosensitizer.13

Besides the high photovoltaic performance, the TiO2 photo-
electrode sensitized with ADEKA-1 possesses much higher
durability to solvents, e.g. nitrile, water and mixtures of them,
and to surface modification using wet processes than those
sensitized with carboxy-anchor dyes. The durability of the
photoelectrode allows the co-adsorption of another sensitizing
dye to the electrode for production of a co-sensitization effect,
and actually we succeeded in improving the Z to 12.8% by
means of the co-sensitization of ADEKA-1 and a silyl-anchor
coumarin dye SFD-5.14

For further improvement in the efficiency of ADEKA-1-sensitized
DSSCs, we expanded the study of co-sensitizers for the cells
to widely developed carboxy-anchor dyes, which have been
demonstrated to possess high sensitizing properties as photo-
sensitizers in DSSCs. In the investigation we found that the
ADEKA-1-sensitized cells with the co-sensitizer LEG415 (Fig. 1b)
exhibited a considerably higher photovoltaic performance through
collaborative sensitization by the dyes, and succeeded in achieving

Fig. 1 Molecular structures of photosensitizing dyes: (a) silyl-anchor dye
ADEKA-1 and (b) carboxy-anchor dye LEG4.
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over 14% conversion efficiency in the cells. The efficiency shows
the high potential of DSSCs to be practical light-to-electric
energy conversion devices in the near future.

As co-sensitizers for the ADEKA-1-sensitized DSSCs, we selected
carboxy-anchor organic sensitizing dyes which have been reported
to have high sensitizing properties and an absorption band in the
shorter wavelength region than ADEKA-1, i.e. LEG4, D35, L0 and
D131 (Fig. S2–S6 and Table S1, ESI†). To check the potential of
these dyes as co-sensitizers for ADEKA-1, we fabricated cells
sensitized by ADEKA-1 and by ADEKA-1 with the dyes using an
electrolyte solution containing an I3

�/I� redox mediator (cell-A; the
fabrication procedures of the cells are described in the ESI†).
Among the cells, a significant and the largest improvement in the
incident monochromatic photon-to-current conversion efficiency
(IPCE) was observed in the cell photosensitized by ADEKA-1 with
LEG4 (Fig. 2a and Fig. S7 in the ESI†). The cell exhibited much

higher IPCE values of close to 90% compared to the cells sensitized
only by ADEKA-1 and only by LEG4 in all of the visible region. The
increase of the open-circuit photovoltage (Voc) and the short-circuit
photocurrent density ( Jsc) compared to those of the cell sensitized
only by ADEKA-1 resulted in the improvement of the Z by a
factor of 1.3 under simulated sunlight at one sun (AM-1.5G,
100 mW cm�2; Table S2, ESI†).

In the cell photosensitized by ADEKA-1 with LEG4, in which
the relative amount of the dyes adsorbed on the TiO2 electrode
was estimated to be 1.0 : 0.25 for ADEKA-1 : LEG4, the improve-
ment of the IPCE values compared to those of the ADEKA-1-
sensitized cell was observed not only in the light-absorption
wavelength region of LEG4 but also in the longer wavelength
region where the light absorption by LEG4 was absent (Fig. S8,
ESI†), which is different to the other co-sensitized cells. In order
to clarify the origin of the peculiar and large improvement in
the IPCE by the co-sensitization with LEG4, we examined MO
calculations of the dyes (Fig. S9 and S10, and Tables S3 and S4
in the ESI†).

The light-to-electric energy conversion in DSSCs proceeds by
light excitation of the sensitizing dye followed by charge separa-
tion produced through electron injection from the LUMO of the
light-excited dye to the conduction band of TiO2. In ADEKA-1 the
alkoxysilyl-anchor moiety links to the chromophore (carbazole/
alkyl-functionalized oligothiophene moiety) via the phenyl-
amide moiety, and the LUMO has a small electron distribution
around the silyl-anchor moiety. On the other hand, the LUMO
of LEG4 has a large electron distribution around the carboxy-
anchor moiety and thus LEG4 is expected to have a higher
electron injection efficiency from the LUMO to the TiO2 con-
duction band than ADEKA-1 (Fig. S9, ESI†). When comparing
the energy levels of the LUMOs of the dyes, only LEG4 has a
lower LUMO than ADEKA-1 which is different to the other dyes,
D35, L0 and D131 (Fig. S6, ESI†), and emission analyses using an
Al2O3 porous film modified by ADEKA-1 with LEG4 showed that
the emission from ADEKA-1 was quenched almost completely
by the existence of LEG4 as the co-adsorbent (Fig. S11, ESI†).
From the MO properties and the results of the emission analyses,
the large improvement of the photovoltaic performance in the
cell photosensitized by ADEKA-1 with LEG4 is considered to be
brought about by the collaborative sensitization by the dyes
through an electron-injection enhancement effect due to the
existence of the LEG4 molecules near the ADEKA-1 molecules
on the TiO2 electrode; the electron transfers from the light-
excited ADEKA-1 to the co-adsorbent LEG4 and immediate
electron injection occurs from LEG4 to the conduction band
of the TiO2 with much higher efficiency than the direct electron
injection from the light-excited ADEKA-1 (Fig. 2b). Internal
quantum efficiency (IQE) measurements revealed a considerably
higher electron injection efficiency in the cell photosensitized by
ADEKA-1 with LEG4, and the maximum IQE was evaluated to be
99� 2% (Fig. S12, ESI†). The increase of the Voc (Table S2, ESI†),
the decrease of the dark-current (Fig. S13, ESI†) and the elonga-
tion of the electron lifetime in the TiO2 conduction band esti-
mated from the transient open-circuit voltage decays (Fig. S14,
ESI†) observed in the co-sensitization with LEG4 indicate that the

Fig. 2 (a) IPCE spectra of the cells photosensitized by ADEKA-1, by LEG4
and by ADEKA-1 with LEG4 (cell-A) and (b) a schematic drawing of the charge
separation processes for the TiO2 electrode sensitized collaboratively by
ADEKA-1 and LEG4.
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adsorbed LEG4 on the TiO2 electrode also works as a suppressor,
preventing back electron transfer from the TiO2 electrode to the
electrolyte by covering the naked surface of the TiO2 electrode
with its plural alkyl-chain substituents.15–18 By using an I3

�/I�

redox electrolyte solution with an experimentally optimized com-
position, the cell photosensitized collaboratively by ADEKA-1 and
LEG4 (cell-B; the fabrication procedures of the cell are described
in the ESI†) exhibited the Z of 11.2% under AM-1.5G one sun
illumination (entry 1 in Table 1).

The maximum photovoltage (Vmax) obtained in the DSSC is
attributed to the energy gap between the quasi-Fermi level of the
TiO2 [approximately the energy level of the conduction-band
edge (EC.B.)] and the redox potential of the electrolyte, and the
improvement of the efficiency of DSSCs is possible by the
increase of the photovoltage through using an electrolyte having
a more positive (lower) redox potential than I3

�/I�.1–4,7–9,11,13–15

The redox potential of the cobalt(III/II) tris(1,10-phenanthroline)
complex ([Co(phen)3]3+/2+) is lower than that of I3

�/I� by
ca. 0.2 V,19 and the values of the HOMO levels of ADEKA-1 and
LEG4 are still more positive than the redox potential of the
cobalt(III/II) complex (Fig. S15, ESI†), which provides the thermo-
dynamic driving force for the dye regeneration reaction by electron
transfer from the Co2+-complex electrolyte to the oxidized dye.13–15

Thus we employed [Co(phen)3]3+/2+ as the redox electrolyte for the
ADEKA-1 and LEG4 co-sensitized cell for further improvement of
the Z of the cells.

In the fabrication of the cells using the cobalt(III/II) complex
redox electrolytes (cell-B), the compositions of the electrolyte
solutions, i.e. the Co2+/Co3+ ratio, the kind of cobalt(III/II) complex
counter anion and the electrolyte additives, were optimized
experimentally according to the literature7,13,14,20,21 using a
platinum-deposited F-doped SnO2 (FTO)-coated glass plate as
the counter electrode. The cell using an electrolyte solution
with the optimized composition exhibited a high Voc of above
1 V and the Z was improved to 13.8% under AM-1.5G one sun
illumination (entry 2 in Table 1) as was expected from the more
positive redox potential of [Co(phen)3]3+/2+. However, a decrease
of the Jsc was also observed in the cell compared to the cell with
the I3

�/I� redox electrolyte solution. In order to recover the Jsc,
we employed graphene nanoplatelets (GNPs) as the material for
the counter electrode and prepared the counter electrode on
a FTO-coated glass plate with a structure of FTO/Au/GNP,
because the counter electrode has been reported to produce

higher Jsc and fill factor (FF) in photocurrent–voltage properties
than the standard platinum electrodes.8,22,23 Fig. 3 shows an
example of the J–V curve under AM-1.5G one sun illumination
(100 mW cm�2) and the IPCE spectrum of the cell co-sensitized by
ADEKA-1 and LEG4. The photovoltaic parameters, assessed as the
averaged values from the J–V curves of the four separately pre-
pared cells, are listed in Table 1 as entry 3 (Table S5, ESI†). The Jsc

was actually improved in the cell from 17.8 to 18.3� 0.1 mA cm�2

by using the FTO/Au/GNP counter electrode and the maximum
value in the IPCE spectrum reached 91%, resulting in the Z of
14.3% with the Voc above 1 V. The better photovoltaic performance
in the lower light intensity is a characteristic of DSSCs. This is also
observed in the present cell and the cell exhibited an Z of close to
15% under simulated sunlight with a 50 mW cm�2 intensity
(entry 4 in Table 1, and Fig. S16 and S17 in the ESI†).

In conclusion, a carboxy-anchor organic dye LEG4 was
revealed to work effectively as the collaborative sensitizer to
the silyl-anchor dye ADEKA-1 in DSSCs, and we succeeded in
obtaining a high IPCE of up to 91%, Voc of above 1 V and 14.3%
conversion efficiency in the cell with the optimized cobalt(III/II)
complex redox electrolyte solution and the GNP counter electrode.

Table 1 Photovoltaic parameters of the cells sensitized collaboratively by ADEKA-1 and LEG4 (cell-B) under the illuminations of the simulated sunlight
(AM-1.5G)

Entry Electrolyte:redoxa
Counter
electrode

Light intensity
(mW cm�2)

Jsc

(mA cm�2) Voc (V) FF Z (%)

1 A:I3
�/I� FTO/Pt 100 19.11 0.783 0.748 11.2

2 F:[Co(phen)3]3+/2+ FTO/Pt 100 17.77 1.018 0.765 13.8
3b F:[Co(phen)3]3+/2+ FTO/Au/GNP 100 18.27 1.014 0.771 14.3
4 F:[Co(phen)3]3+/2+ FTO/Au/GNP 50 9.55 0.994 0.776 14.7

a Electrolyte: (A) 0.07 M I2, 0.05 M LiI, 0.05 M NaI, 0.50 M DMPImI, 0.10 M EMImI, 0.05 M TBAI, 0.05 M THAI, 0.40 M TBP, 0.10 M MP, and 0.10 M
GuSCN in MeCN/VN/THF (8 : 1 : 1 in volume); (F) 0.20 M [Co2+(phen)3](PF6

�)2, 0.05 M [Co3+(phen)3](PF6
�)3, 0.07 M LiClO4, 0.02 M NaClO4, 0.03 M

TBAPF, 0.01 M TBPPF, 0.01 M HMImPF, 0.30 M TBP, 0.10 M TMSP, 0.10 M MP, 0.05 M CPrBP, 0.10 M CPeBP, and 0.05 M COcBP in MeCN. The data
for the cells with other electrolytes (B–E) are listed in Table S6 (ESI). b The values are the averages of the results of the four cells which were
prepared separately (Table S5, ESI).

Fig. 3 A typical J–V curve of the cell photosensitized collaboratively by
ADEKA-1 and LEG4 with an efficiency of over 14% (entry 3a in Table S5,
ESI†) under the illumination of simulated sunlight (AM-1.5G, 100 mW cm�2).
Inset shows the IPCE spectrum of the cell.
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The result is attributed basically to the strong adsorption proper-
ties of ADEKA-1 to the TiO2 electrode and shows the validity of
silyl-anchor dyes as photosensitizers for DSSCs. The observation
of conversion efficiencies of over 14% in these DSSCs indicates
the high potential of DSSCs as light-to-electric energy conversion
devices. The collaborative sensitization by plural organic dyes
including silyl-anchor dyes, which would bring a further improve-
ment in the photovoltaic performance of DSSCs, is considered as
a promising way to produce practical DSSCs.

This work was partly supported by the ‘‘Element Innovation’’
Project by the Ministry of Education, Culture, Sports, Science &
Technology in Japan and by JSPS KAKENHI Grant Number
15H03848.
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