A high water-content and high elastic dual-responsive polyurethane hydrogel for drug delivery†
Abstract
Stimuli-responsive hydrogels are soft, biocompatible and smart biomaterials; however, the poor mechanical properties of the hydrogels limit their application. Herein, we prepared a reductant- and light-responsive polyurethane hydrogel which was made of polyethylene glycol, 1,6-diisocyanatohexane, azobenzene, cyclodextrin and disulfide. Attenuated Total Reflectance Infrared Spectra and 1H NMR were used to characterize the structure of the hydrogel. The hydrogel has a high elasticity (a tensile modulus of 36.5 ± 0.5 kPa and a storage modulus of 52.9 ± 1.2 kPa) at a high water content (91.2 ± 0.4%). Swelling, mechanical and rheological properties of the hydrogel can be tuned by the content of the crosslinker, light and reductant. The hydrogel has low cytotoxicity and it can be used for drug delivery. Ultraviolet irradiation helped to load drugs and the reductant accelerated the drug release. With its high mechanical properties and light- and reductant-responsiveness, the hydrogel is hopefully to be used as a drug carrier.