Issue 41, 2015

Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%

Abstract

A new electron donor, 4-(2-octyldodecyl)-dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one (DTPO), for polymer semiconductors is reported. Its homopolymer PDTPO reveals a high hole mobility of 0.19 cm2 V−1 s−1 in field-effect transistors. Its copolymers with benzodithiophenes (BDTO and BDTT), namely PDTPO-BDTO and PDTPO-BDTT, not only show wide optical bandgaps of 2.02 and 1.95 eV, but also possess deep HOMO levels of −5.38 and −5.44 eV, respectively. The polymer solar cell based on PDTPO-BDTO with an inverted architecture achieves a power conversion efficiency (PCE) of 6.84% with a high open-circuit voltage (Voc) of 0.93 V, while the one with PDTPO-BDTT realizes the same PCE with conventional architecture and a reasonably high Voc of 0.96 V. The PCEs are among the highest ever reported for wide bandgap PSCs. Compared to the blend with PDTPO-BDTO having the 2-ethylhexyloxy group, the one with PDTPO-BDTT having the 5-(2-ethylhexyl)thiophene-2yl- group is demonstrated to be superior as a result of faster exciton separation into free charge carriers and larger driving force for exciton dissociation, which results in high short-circuit current and Voc, respectively. The wide optical bandgaps and the excellent device performances make these polymers good candidates for boosting the PCE of the PSCs with a ternary blend layer or tandem structures.

Graphical abstract: Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2015
Accepted
07 Sep 2015
First published
09 Sep 2015

J. Mater. Chem. A, 2015,3, 20516-20526

Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%

M. Hao, G. Luo, K. Shi, G. Xie, K. Wu, H. Wu, G. Yu, Y. Cao and C. Yang, J. Mater. Chem. A, 2015, 3, 20516 DOI: 10.1039/C5TA06111C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements