Issue 32, 2015

Efficient small molecular ternary solar cells by synergistically optimized photon harvesting and phase separation

Abstract

Recently, power conversion efficiency (PCE) of organic solar cells has been increased up to about 10% by using solvent additives or mixed solutions to elaborately adjust phase separation which is a great challenge for large scale production. We report a champion PCE of 7.40% for solution-processed small molecule ternary SMPV1 : DIB-SQ : PC71BM solar cells by only adjusting the DIB-SQ doping ratio in donors without any treatments on the blend solutions or active layers. The champion PCE of ternary solar cells is larger than the champion PCEs sum (6.98%) of binary solar cells with SMPV1 : PC71BM or DIB-SQ : PC71BM as the active layers. The PCE improvement should be attributed to the synergistic enhancement of photon harvesting, exciton dissociation, charge carrier transport and collection by the appropriate DIB-SQ doping ratio in donors. The experimental results on morphology, crystallinity, phase separation and charge carrier mobility of active layers well support the PCE improvement in ternary solar cells with a 10 wt% DIB-SQ doping ratio in donors.

Graphical abstract: Efficient small molecular ternary solar cells by synergistically optimized photon harvesting and phase separation

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2015
Accepted
08 Jul 2015
First published
09 Jul 2015

J. Mater. Chem. A, 2015,3, 16653-16662

Efficient small molecular ternary solar cells by synergistically optimized photon harvesting and phase separation

Q. An, F. Zhang, Q. Sun, J. Wang, L. Li, J. Zhang, W. Tang and Z. Deng, J. Mater. Chem. A, 2015, 3, 16653 DOI: 10.1039/C5TA04243G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements