Interfacial equation of state for ionized surfactants at oil/water interfaces
Abstract
A new mathematical approach has been developed for describing the interfacial behaviour of oil/water interfaces in the presence of ionic surfactants. The approach relies on the ideal behaviour of ionized surfactants at oil/water interfaces, which is previously demonstrated by Lucassen-Reynders (J. Phys. Chem., 1966, 70, 1777–1785). The new derived equation simply relates the interfacial tension to the surfactant molecular size and the cmc value of the surfactant in the aqueous phase. The predicted values are in a reasonable agreement with the measured experimental data. Formation of complex multi-layers is considered and the related development is performed. It is shown that, assuming a multi-layer interface, the proposed model gives an area per surfactant molecule similar to the values obtained by techniques such as neutron reflectivity (NR), while a monolayer assumption yields about half the value. The discussion describes the impact of dissolved oil and ionic components on the interfacial tension of the ionized surfactants at oil/water interfaces.