Issue 116, 2015

{CoIIIMnIII}n corrugated chains based on heteroleptic cyanido metalloligands

Abstract

The use of the cyanide-bearing complexes PPh4[CoIII(4,4′-dmbipy)(CN)4] and PPh4[CoII(dmphen)(CN)3] as metalloligands towards [Mn(salen)(H2O)]ClO4 affords one-dimensional coordination polymers with the formulas {[MnIII(salen)(μ-NC)2CoIII(4,4-dmbipy)(CN)2]·H2O}n (1) and {[MnIII(salen)(μ-NC)2CoIII(dmphen)(CN)2]}n (2) [PPh4+ = tetraphenylphosphonium cation, 4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine, dmphen = 2,9-dimethyl-1,10-phenanthroline and H2salen = N,N′-ethylenebis(salicylideneimine)]. Compounds 1 and 2 were structurally characterized. Their structures consist of neutral chains with regular alternating [Mn(salen)]+ and [CoIII(4,4′-dmbipy)(CN)4] (1)/[CoIII(dmphen)(CN)4] (2) moieties, the latter ones acting as bis-monodentate ligands towards the Mn(III) units through two of their four cyanide groups. During the synthesis, the cobalt(II) ion of the starting [CoII(dmphen)(CN)3] metalloligand is oxidized to Co(III) and it takes an additional cyanide ligand to transform into {CoIII(dmphen)(CN)4} in 2. Magnetic studies have been carried out on 1 and 2 in the temperature range 1.9–300 K which yielded local negative zero-field splitting parameters of −3.26 (1) and −4.38 cm−1 (2). Frequency-dependent alternating current susceptibility signals under an external applied magnetic field (dc) were clearly observed for 1 and 2 indicating slow magnetic relaxation, that is, Single Ion Magnet (SIM) behaviour. The energy barriers (Ea) to reverse the magnetization direction under an applied dc magnetic field of 2000 Oe were 12.0(2) (1) and 9.4(3) cm−1 (2), whereas the values of the pre-exponential factor (τo) were 1.40(2) × 10−8 (1) and 2.5(2) × 10−8 s (2).

Graphical abstract: {CoIIIMnIII}n corrugated chains based on heteroleptic cyanido metalloligands

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2015
Accepted
15 Oct 2015
First published
15 Oct 2015

RSC Adv., 2015,5, 95410-95420

{CoIIIMnIII}n corrugated chains based on heteroleptic cyanido metalloligands

M. Alexandru, D. Visinescu, N. Marino, G. de Munno, F. Lloret and M. Julve, RSC Adv., 2015, 5, 95410 DOI: 10.1039/C5RA16307B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements