Low temperature self-assembled synthesis of hexagonal plate-shape Mn3O4 3D hierarchical architectures and their application in electrochemical capacitors†
Abstract
There is an intense need for development in the field of hierarchically structured functional materials owing to their outstanding and peculiar properties. Herein, we report the 3D Mn3O4 hierarchical architectures synthesized based on a self-assembly approach via a hydrothermal synthesis route at low temperature, which is sparse in literature. The synthesized Mn3O4 hierarchical architectures were characterized with XRD, FE-SEM, HRTEM/SAED, and FTIR. Electrochemical studies show that the Mn3O4 hierarchical architectures exhibit acceptable specific capacitance and excellent electrochemical stability, making them promising electrode materials in electrochemical capacitors.