Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy†
Abstract
Near-infrared surface-enhanced Raman scattering (NIR SERS) imaging is now a promising molecular imaging technology due to its narrow spectral bandwidth, low background interference and deep imaging depth. In this work, we report a novel strategy for fabrication of NIR SERS nanoprobes without using any expensive and highly toxic organic dyes. Multifunctional conducting polymer (CP) materials, serving as both biocompatible surface coatings and NIR-active reporters, are directly fabricated on the surface of gold nanorods (GNRs) via facile oxidative polymerization. The dye-free NIR SERS nanoprobes (GNR-CPs) exhibit good structural stability, good biocompatibility and intriguing NIR SERS activity. GNR-CPs also show an extraordinary NIR photothermal transduction efficiency, indicating the potential for cancer therapy. The applications of GNR-CPs as new types of theranostic agents for NIR SERS imaging and high-performance photothermal therapy are accomplished in vitro and in vivo.