Issue 2, 2015

Fluorous-inorganic hybrid dielectric materials for solution-processed electronic devices

Abstract

We report the synthesis and characterisation of fluorous-inorganic hybrid dielectric (FIHD) materials processable in highly fluorinated orthogonal solvents for printed electronic devices. FIHD materials were prepared successfully via ligand exchange reactions between organic ligands on the surfaces of nanomaterials and highly fluorinated carboxylic acids. When hafnium oxide (HfO2) or zirconium oxide (ZrO2) nanoparticles stabilized with trioctylphosphine oxide (TOPO) were treated with perfluoro-3,6,9-trioxatridecanoic acid in HFE-7500 at 130 °C, the modified surface characteristics of the nanoparticles resulted in excellent solubilities in the fluorous solvent. The dielectric constant of HfO2 and ZrO2 nanoparticles modified with fluorous acid was ca. 4.4 and 4.3 at 1 KHz, respectively, which is significantly higher than that of fluoropolymers. Top-gate organic thin film transistors (OTFTs) were fabricated using solution-processed organic semiconductors and HfO2-based FIHD materials. The hole mobilities of the OTFTs produced were as high as 0.08 cm2 V−1 s−1 (Vds = −40 V) and the on/off ratio reached 3.3 × 106 when 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TESADT) was employed as the semiconductor layer. These device performances demonstrate that FIHD materials can be useful components for general printed electronic devices processed with soluble organic electronic materials.

Graphical abstract: Fluorous-inorganic hybrid dielectric materials for solution-processed electronic devices

Supplementary files

Article information

Article type
Paper
Submitted
26 Aug 2014
Accepted
24 Sep 2014
First published
25 Sep 2014

New J. Chem., 2015,39, 836-842

Author version available

Fluorous-inorganic hybrid dielectric materials for solution-processed electronic devices

H. Kim, S. H. Jo, J. Jee, W. Han, Y. Kim, H. Park, H. Jin, B. Yoo and J. Lee, New J. Chem., 2015, 39, 836 DOI: 10.1039/C4NJ01435A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements