Issue 8, 2015

Magnetophoresis ‘meets’ viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device

Abstract

The deflection of magnetic beads in a microfluidic channel through magnetophoresis can be improved if the particles are somehow focused along the same streamline in the device. We design and fabricate a microfluidic device made of two modules, each one performing a unit operation. A suspension of magnetic beads in a viscoelastic medium is fed to the first module, which is a straight rectangular-shaped channel. Here, the magnetic particles are focused by exploiting fluid viscoelasticity. Such a channel is one inlet of the second module, which is a H-shaped channel, where a buffer stream is injected in the second inlet. A permanent magnet is used to displace the magnetic beads from the original to the buffer stream. Experiments with a Newtonian suspending fluid, where no focusing occurs, are carried out for comparison. When viscoelastic focusing and magnetophoresis are combined, magnetic particles can be deterministically separated from the original streamflow to the buffer, thus leading to a high deflection efficiency (up to ~96%) in a wide range of flow rates. The effect of the focusing length on the deflection of particles is also investigated. Finally, the proposed modular device is tested to separate magnetic and non-magnetic beads.

Graphical abstract: Magnetophoresis ‘meets’ viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device

Article information

Article type
Paper
Submitted
28 Jan 2015
Accepted
20 Feb 2015
First published
20 Feb 2015

Lab Chip, 2015,15, 1912-1922

Magnetophoresis ‘meets’ viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device

F. Del Giudice, H. Madadi, M. M. Villone, G. D'Avino, A. M. Cusano, R. Vecchione, M. Ventre, P. L. Maffettone and P. A. Netti, Lab Chip, 2015, 15, 1912 DOI: 10.1039/C5LC00106D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements