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Rice straw hydrolysate to fuel and volatile fatty
acid conversion by Clostridium sporogenes BE01:
bio-electrochemical analysis of the electron
transport mediators involved

Lalitha Devi Gottumukkala,*a,c Rajeev Kumar Sukumaran,a S. Venkata Mohan,b

Sajna Kuttuvan Valappil,a Omprakash Sarkarb and Ashok Pandeya

Clostridium sporogenes BE01, a non-acetone forming butanol producer, can produce hydrogen and

volatile fatty acids (VFAs) during butanol fermentation from rice straw hydrolysate. Bio-electrochemical

analysis revealed the changes that occurred in the redox microenvironment and electron transport

mediators during fermentation at different pH and CaCO3 concentrations. CaCO3 played a very important

role in enhancing the production of hydrogen, volatile fatty acids and solvents by stimulating the changes

in the electron transport system. The electron transport system mediated by NAD/NADH, flavins, Fe–S

clusters, protein bound FAD, and cytochrome complex in C. sporogenes BE01 was analysed by cyclic vol-

tammetry (CV). Electrokinetic analysis revealed that the favorability for redox reactions increased with an

increase in pH, and the polarization resistance reduced significantly with CaCO3 supplementation.

1. Introduction

Biobutanol has gained significant attention for its properties
as a liquid transportation fuel, but its production from ligno-
cellulosic biomass is facing challenges both technically and
economically.1 VFAs and hydrogen produced during butanol
fermentation can be considered as an added advantage, when
an efficient process is in place. The formation of various indus-
trial products from a single substrate in a single run can be
considered beneficial for lignocellulosic biorefinery processes.
The fluctuation in the redox environment leads to change in
the bacterial growth pattern, glucose utilization, and products
formed,2 and hence it is essential to understand the redox
microenvironment of the bioreactors operated with the desired
biomass and microbes. The redox balance in a bioreactor is
one among the many key components that controls carbon
flux and changes in the metabolic activity of the organism.3 In
order to assess the bio-electric potential of a bioreactor, it is
essential to perform an analysis of the bio-electro catalytic

efficiency of the microbial catalyst. The electrochemical charac-
terization of microbial bioreactors will help in understanding
the redox active species participating in the electron transfer
reactions.4

The metabolic pathway of glucose to butanol conversion is
complex and several enzymes are involved in diverting the
pathway towards VFAs (acetic acid and butyric acid) and for
the assimilation of these VFAs to solvents. It is a highly inter-
linked chain of redox reactions with many electron transpor-
ters involved. The formation of hydrogen and volatile fatty
acids is an intrinsic part of the biochemical pathway for
butanol fermentation by Clostridia.5 Conversion of glucose to
acetyl CoA through pyruvate route generates hydrogen, and
acetyl CoA is the precursor for VFAs and solvent production.6,7

Hydrogen generated by Clostridial species is directly related to
volatile fatty acid production. The conversion of acetyl CoA to
acetate yields hydrogen in twice the yield than the conversion
to butyrate8 and the ratio of acetic acid and butyric acid has a
tremendous effect on the ratio of the solvents formed.9 Hydro-
gen produced during the process is an energy rich gaseous
fuel and VFAs can be used as precursors for polyhydroxyalk-
anoates.10 The solvents are the main metabolic products and
can be used as biofuels.

This study presents the efficiency of C. sporogenes BE01, a
novel non-acetone producing bacteria, to convert fermentable
sugars generated from the hydrolysis of lignocellulosic
biomass to solvents, VFAs and hydrogen. The study also
focuses on understanding the possible electron transport
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mediators and redox reactions involved during the process.
This is the first report on hydrogen production from rice straw
hydrolysate using a pure strain of C. sporogenes and also
the first report on demonstrating the electron transporter
mediated redox activity of Clostridium species during bio-
butanol fermentation from lignocellulosic biomass.

2. Results and discussion
2.1. Glucose utilization

The dilute acid pretreatment and enzymatic hydrolysis of rice
straw generated 45 g L−1 of glucose. However, heat sterilizing
the hydrolysate at 121 °C for 10 min resulted in 15 g L−1 sugar
loss and the final glucose obtained was 30 g L−1. Pentoses
were found in negligible concentrations in the hydrolysate, as
the hemicellulosic fraction was efficiently removed during
dilute acid pretreatment. The redox microenvironment of
C. sporogenes BE01 driven biobutanol fermentation in enzy-
matic rice straw hydrolysate was studied at various initial pH
(5.8, 6.2, 6.4 and 6.8) and with different CaCO3 concentrations
(0 g L−1, 5 g L−1 and 10 g L−1). pH plays a very significant role
in the microbial catalysis and growth of the bacteria. Especially
in butanol fermentation, pH has direct control over the for-
mation and assimilation of acids.11 C. sporogenes BE01 exhibi-
ted a change in the pattern of glucose utilization with changes
in the microenvironment of the bioreactor. pH of the medium
in the range of 5.8 to 6.4 had a very low effect on sugar utili-
zation, but the utilization rate enhanced with pH approaching
near neutral. This signifies the increased metabolic activity
and growth at a near neutral pH (Fig. 1a).

Supplementation with CaCO3 in the medium enhanced
glucose utilization and it increased with an increasing concen-
tration of CaCO3 (0, 5 and 10 g L−1) (Fig. 1b). Increased
glucose consumption and ABE productivity in the presence of
≥4 g L−1 CaCO3 was reported with C. beijerinkii grown in semi
defined P2 medium.12 Calcium ions have various effects on a
cellular level, which can contribute to increased growth

though pH buffering effects might also contribute to stimu-
latory effects on butanol fermentation. It was reported by
Richmond et al. that the presence of CaCO3 increased protein
synthesis in Clostridium species and this increase was pro-
portional to the amount of CaCO3 in the medium. It was also
stated that these upregulated proteins might be involved in
glucose uptake and utilization.13 Similar glucose utilization
patterns were observed in our results with C. sporogenes BE01
(Fig. 1b).

2.2. Hydrogen and volatile fatty acids

During butanol fermentation, butyric acid production was rela-
tively higher than the acetic acid production under all the con-
ditions tested (Fig. 2). C. sporogenes is a known producer of
butyric acid and has been reported for cheese fermentation in
combination with C. butyricum and C. beijerinckii.14,15 In C. tyro-
butyricum fermentation studies, butyrate at 15 g L−1 showed an
inhibitory effect on acetate formation.16 In this study, when
overall VFAs production was considered, near neutral pH 6.4
and 6.8 were found to be favourable with a production of 5.2 g
L−1 and 5.5 g L−1, respectively. The reactor with a CaCO3 con-
centration of 5 g L−1 performed considerably well for the con-
version of sugars to acids (Fig. 2b and d).

C. propionicum, an organic acid producer, showed the
highest growth and organic acid production at pH 7.17 Acid
forming enzymes are highly pH dependent. The activity of the
enzymes can be inhibited or enhanced with an increase or
decrease in pH.16 The acidogenic process was highly active in
the first 24 h and became stable throughout the fermentation
period, except at pH 6.8, VFAs production increased until 48 h,
sharply decreased at 72 h and increased again at 96 h (Fig. 2a
and c). The same was observed with 5 g L−1 and 10 g L−1

CaCO3 supplementation, which could be attributed to efficient
assimilation of acids in the solvents at 72 h. Hydrogen pro-
duction was in accordance with acid production and the
highest percentage of hydrogen (20%) of the total gas pro-
duced was at pH 6.4 and 6.8 (Fig. 3a). Although there was no
considerable difference in the percentage of hydrogen pro-

Fig. 1 Glucose consumed by C. sporogenes BE01 from rice straw hydrolysate. (a) At different initial pH supplemented with 10 g L−1 CaCO3. (b) With
the supplementation of CaCO3 at two different concentrations (5 g L−1 and 10 g L−1) and without the supplementation of CaCO3 (0 g L−1).
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duced, there was a notable difference in the total gas produced
at different pH and showed marked variation when rep-
resented in terms of cumulative hydrogen (Fig. 3c and d). The
total hydrogen production increased with an increase in pH to
6.4 but reduced at pH 6.8. The total hydrogen production at
pH 6.4 continued for 96 h and there was little reduction in the
gas production with respect to time (Fig. 3c).

The optimal pH for hydrogen production varies with each
species and strains. For C. beijerinkii DSM 1820, the optimum
pH reported was 6.7, for C. pasteurianum it was 5.4 and for
C. butyricum it was 5.1.18 Hydrogen production varies with
a change in glucose concentration. In C. acetobutylicum
ATCC824 glucose fermentation, the hydrogen production rate
ranged from 680 to 1270 ml g−1 glucose per liter of reactor.19

There was an increase in total gas production and percentage
hydrogen production when the CaCO3 concentration was
reduced to 5 g L−1 (1260 ml L−1), but in the absence of CaCO3

and with an increase in CaCO3 to 10 g L−1 the total hydrogen
produced was 591 ml and 698 ml, respectively (Fig. 3b and d).
The long acidogenic phase and higher acid production can be
correlated with the increased hydrogen production found with
the supplementation of 5 g L−1 CaCO3. The favorability of 10 g

L−1 CaCO3 was towards solvents assimilation rather than
hydrogen production.

2.3. Solvents production

C. sporogenes BE01 was reported in our previous studies for its
ability to produce solvents from rice straw hydrolysate.20

Butanol and ethanol were the two solvents produced by
C. sporogenes BE01 without forming acetone and their ratio
varies with the change in the process parameters. Acetic acid
and butyric acid, produced in the acidogenic phase of the
culture, were assimilated at the later solventogenic phase of
the culture.21 C. sporogenes BE01 was able to form solvents at
pH as low as 5.8, but solvent production increased when pH
approached near neutral (Fig. 4a and c). At 5.8 pH, though the
rate of butanol and ethanol formation was high for the first
48 h and 24 h, respectively, solvent formation ceased later and
the total solvent produced was comparatively less (Fig. 4a and
c). This could be due to the lowered pH with VFAs production
and inefficient assimilation of the VFAs. At pH 6.2 and 6.4, a
relatively high solvent production was observed for the first
24 h and 72 h, respectively. Further accumulation of solvents
was not found from 72 h to 96 h. The efficient conversion of

Fig. 2 Volatile fatty acid (VFA) production by C. sporogenes BE01 in rice straw hydrolysate at different initial pH and CaCO3 concentrations. (a)
Butyric acid production at different initial pH. (b) Butyric acid production with the supplementation of CaCO3. (c) Acetic acid production at different
initial pH. (d) Acetic acid production with different CaCO3 concentrations.
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sugars and acids to solvents was achieved in a different mode
by C. sporogenes BE01 at pH 6.8. Solvent formation in the first
24 h was considerably low compared to rest of the pH ranges,
which signifies that the acid accumulation did not lead to a
decrease in the pH to a level wherein assimilation starts for
solvent production, but the overall high solvent production
7.3 g L−1 was achieved with a constant increase in
solvent accumulation until 96 h without attaining saturation
(Fig. 4a and c).

CaCO3 was used to maintain the pH in the range by neutra-
lizing the organic acids formed during fermentation. A pre-
liminary study on the effect of CaCO3 on butanol fermentation
was mentioned in our previous report,20 and in the current
study, we tried to correlate it with the initial pH and solvent
formation. Solvent production increased with an increase in
the concentration of CaCO3 in the medium (Fig. 4b and d).
This could be due to the effect of calcium ions and its effective
buffering action, which resulted in efficient VFA assimilation.
Without CaCO3 supplementation, the total yield of solvents

was just 3.8 g L−1, which could be due to the low glucose utili-
zation rate and low VFA formation. The supplementation
of 10 g L−1 CaCO3 increased the total solvent production to
7.4 g L−1. A reduction in CaCO3 concentration from 10 g L−1 to
5 g L−1 lead to a 26% decrease in the total solvents formed
(Fig. 4d).

The final pH of all the experiments varied with the changes
in the CaCO3 concentration in the medium. In the absence of
CaCO3 and with the supplementation of 5 g L−1 CaCO3, the pH
dropped from 6.8 (initial pH) to 5.9 (final pH) in 96 h, indicat-
ing the formation of acids and their improper assimilation
into the solvents; whereas, with 10 g L−1 CaCO3, the pH
dropped to 6.3 in 48 h and then gradually increased to 6.5 in
96 h. The CaCO3 concentration was observed to affect the
solvent production more than the initial pH of the medium.

2.4. Electrochemical analysis

The variations in the voltammogram peaks obtained during
cyclic voltammetry (CV) analysis and the change with respect

Fig. 3 Hydrogen production by C. sporogenes BE01 in rice straw hydrolysate. (a) Percentage hydrogen production at different initial pH. (b) Percen-
tage hydrogen production with different CaCO3 concentrations. (c) Cumulative hydrogen production at different initial pH (d) Cumulative hydrogen
production with different CaCO3 concentrations.
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to time were due to the differences in the initial pH and
CaCO3 concentrations in the rice straw hydrolysate medium.
The redox currents were found to be high with sterile rice
straw hydrolysate alone, which signifies it is potential substrate
for bio-electro catalytic reactions. The redox currents did not
differ predominantly and were mostly in the range from RC:
−18 ± 3 µA to OC: 18 ± 4 µA. With the alterations in the initial
pH and various CaCO3 concentrations in the medium, the
difference observed was marginal (Fig. 5). The observations
indicate that the catalytic activity was more or less the same in
all the conditions provided, but the difference was with the
shift in metabolic activity and the mediators/electron carriers
involved.

2.4.1. Electron transport mediators. In all the different
initial pH experiments except at pH 5.8, the preliminary hours
had shown redox potential for the biological reaction of NAD+/
NADH (E0 values −0.32 V) and the cytochrome complex (0.1 to

0.25 V).22 In the later hours peaks for flavins (−0.2 V to −0.29 V),
protein bound FAD (0.00 V to 0.1 V) and iron–sulphur clusters
were observed.23,24 Iron–sulphur clusters with E0 values
less than −0.05 can be attributed to rubredoxin or any of the
simplest type of Fe–S clusters and those with E0 values close to
−0.15 could be attributed to the iron–sulphur cluster of N2
[4Fe–4S] associated with complex 1.25,26 Rubredoxin from
C. pasteurianum was reported to have a reduction potential of
less than −0.05 V.26 The association of Fe–S with Fe–Fe de-
hydrogenase enzyme for hydrogen production is also well
reported.27 The peaks for the 4Fe–4S clusters were not promi-
nent at pH 5.8, but were found after 24 h at pH 6.2, which
extended up to 72 h at pH 6.4 and at near neutral pH the
peaks were observed after 96 h. There have been reports on
increased levels of Fe–S clusters during solvent formation and
furfural challenged cultures.28 Although in bacteria their
primary function is to mediate low potential electron transfer,

Fig. 4 Solvents produced by C. sporogenes BE01 in rice straw hydrolysate. (a) Butanol produced at different initial pH. (b) Butanol produced with
different CaCO3 concentrations. (c) Ethanol produced at different initial pH. (d) Ethanol produced with different CaCO3 concentrations.
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their function is extended to several catalytic proteins.29 The
interference of protein bound FAD increased with an increase
in pH and can be attributed to the reactions that occur in the
presence of enzymes like ferredoxin reductases containing
FAD as the prosthetic group.30

Distinct peaks were observed with the change in CaCO3

concentration in the medium. The peaks for cytochrome,
quinone and simple Fe–S clusters were commonly observed
throughout the fermentation. The major difference was with
the frequency of peaks for NADH, protein bound FAD, flavo-
proteins and 4Fe–4S clusters. Peaks were observed for all the
mediators mentioned above with 10 g L−1 CaCO3 containing
medium. The presence of many electron transporters implies
that the redox activity occurred efficiently and this was also
supported by high butanol production. While in the absence

of CaCO3 peaks for the common mediators, such as cyto-
chrome bc1 and 4Fe–4S, clusters were observed. Rubredoxins,
like Fe–S clusters in bacteria, are low potential electron trans-
porters and this could be the reason for the comparatively
lower acid and solvent production. With 5 g L−1 CaCO3, the
peaks for cytochrome bc1, NAD/NADH, and flavoproteins were
found but protein bound FAD peaks were absent.

2.4.2. Electron transportation during butanol fermenta-
tion. Cyclic voltammetry analysis suggested that NADH, flavo-
proteins, protein bound FAD/FMN and 4Fe–4S clusters were
involved in the electron transport system, which might be facili-
tating a key reaction that results in higher butanol yields.
Peaks were prominent for 4Fe–4S and protein bound FAD with
10 g L−1 CaCO3 supplementation, wherein high solvent pro-
duction was observed. This indicates the stimulation of a

Fig. 5 Cyclic voltammogram profiles recorded at various pH and CaCO3 concentrations: 0% – No CaCO3, 0.5% – 5 g L−1 CaCO3, 1% – 10 g L−1

CaCO3.
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membrane bound protein that has FAD and 4Fe–4S clusters.
In the fermentation conditions, wherein high VFAs and hydro-
gen were produced, the peaks for NADH, flavoproteins and
Fe–S cluster were prominent and very interestingly, whereas
the peaks for protein bound FAD were very rare. Based on the
redox potentials obtained for various electron transport
mediators during the tested fermentation conditions and the
reported electron transport systems in Clostridium species, the
most probable electron transport system involved in hydrogen
production, VFAs and butanol fermentation was postulated
(Scheme 1).

In an electron transport system, electrons always flow from
a negative to positive redox potential. Based on the CV peaks,
during solvent formation, the electrons flow from NADH
(−0.32 V) to an enzyme or protein that contains FAD (0.0 to 0.1 V)
via flavins (FMN/FAD) (−0.2 to 0.29 V) and the 4Fe–4S clus-
ters (−0.15). Quinones and cytochromes (0.1 to 0.25 V) stabi-
lize the FAD bound enzyme in the reduced state. However, for
fermentation conditions wherein the solvent formation was
low and VFAs formation was high, the peaks for FAD and 4Fe–
4S clusters were less prominent, while peaks for simple Fe–S
clusters were dominant. This indicates that there was a shift or
bifurcation in electron transportation during solventogenesis.

There are reports on a Clostridial electron transport bifur-
cation system, wherein the cytoplasmic complex of butyryl CoA
dehydrogenase and electron transferring flavoprotein (BCD/
ETF) catalyses a key reaction (crotonyl CoA to butyryl CoA) in
the butanol pathway and is coupled to a membrane associated
proton translocating NADH-ferredoxin reductase complex (Rnf
A-G or Rnf A-E).30,31 Signals obtained for the 4Fe–4S clusters,

protein bound FAD/FMN, flavoproteins and NAD/NADH are
characteristic of the electron bifurcation system, involving the
Rnf complex, and have been reported in few Clostridium
species.30 Quinones and cytochrome were reported for main-
taining the enzymes in their reduced active state.32 The NADH-
ferredoxin reductase (RnfA-G) complex that couples ferredoxin
oxidation by NAD+ with proton/Na+ translocation is a mem-
brane associated enzyme complex, which contains 4Fe–4S clus-
ters, covalently bound FMN, non-covalently bound FAD and
2Fe–2S clusters. The electrons are proposed to flow from
NADH to the Rnf complex, resulting in the translocation of
Na+ or H+.30,33 RnfA-G was reported in C. tetanomorphum, but
whether Rnf is a real Na+ pump or H+ pump that translocates
Na+ during proton gradient formation has to be still estab-
lished.30 In C. ljungdahlii and C. kluvyeri, proton translocating
Rnf has been reported.30,33,34

During butanol fermentation, glucose is converted to pyru-
vate, which is further oxidized to acetyl CoA and acetate.
Hydrogenases linked to pyruvate:ferredoxin oxidoreductase
produce hydrogen using proton as a terminal acceptor.
However, hydrogenases coupled to NADH: ferredoxin
reductases produce hydrogen using NADH as an electron
donor and proton as an electron acceptor.35 Rnf/Nqr (NADH:
quinone oxidoreductase) was reported in the genome of all
C. botulinum group 1, but absent from the group II genomes36

and it is a known fact that C. sporogenes is considered as a
non-toxigenic equivalent of the C. botulinum group I.37 This
strengthens the idea of Rnf based electron transportation in
C. sporogenes during glucose fermentation.

There are no detailed reports on C. sporogenes butanol fer-
mentation and the metabolic pathway involved. A correlation
of the CV analyses with the pattern of products formed during
fermentation broadly suggest the possible stimulation of the
electron transport chain associated with Rnf and butyryl CoA
dehydrogenase in the presence of CaCO3. Calcium ions were
also reported to stabilize membrane bound proteins.13 The
increased production of butanol and butyric acid with the
supplementation of CaCO3 can be attributed to stimulation
and stabilization of membrane proteins. However, detailed
research is necessary to support this hypothesis.

2.5. Bio-electro kinetic analysis

The rate of electron transfer to the electrode by the oxidized
and reduced species can be interpreted by a Tafel plot. Accord-
ing to the Tafel equation, when the over potential is large the
reverse reaction rate is negligible. The slope of the Tafel plot
reveals the value of the electron transfer coefficient.38 A low
Tafel slope indicates the high current obtained at low over
potential. Therefore, the higher the slope, the higher the acti-
vation energy required, which indicates the less favourability
of the oxidation/reduction reaction.39 The efficiency of the bio-
reactor towards reduction or oxidation reactions and the
favourability for the membrane associated biochemical redox
reactions can be analyzed by the redox slopes obtained under
each condition with respect to time. Oxidative Tafel slopes and

Scheme 1 Electron transporters involved and the possible electron
flow during butanol fermentation, VFA and hydrogen production from
rice straw hydrolysate by C. sporogenes BE01. Green: 5 g L−1 CaCO3

supplementation; yellow: 10 g L−1 CaCO3 supplementation; pink:
common mediators in all the fermentation conditions tested; ↑ high
concentration; ↓ low concentration.
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reductive Tafel slopes were derived from the Tafel plot
obtained (Fig. 6).

Although there was variation in the Tafel slopes obtained
with respect to changes in the pH and CaCO3 concentrations,
in all the experimental conditions the oxidative slope was
higher than the reductive slope. This indicates that the rice
straw hydrolysate bioreactor with C. sporogenes BE01 was more
favourable towards the reduction metabolism, i.e. solvent pro-
duction. In relation to the different initial pH experiments, the
oxidative slope increased with increase in pH and the reductive
slope decreased with increase in pH (Fig. 7a and b). This indi-
cates that the reduction metabolism was favourable at pH 6.4
and 6.8 compared to that at a lower pH.

In the absence of CaCO3, the oxidation slope was low but
increased with an increase in CaCO3 concentration in the
medium (Fig. 7c). This suggests that the addition of CaCO3

was not favourable for the oxidation reactions and in the case
of the reduction slopes, 5 g L−1 CaCO3 showed a comparatively
lower reduction potential followed by 10 g L−1 CaCO3 and no
CaCO3 supplementation (Fig. 7d). Reduction in the activation
energy required for the redox reactions in the presence of
CaCO3 could be responsible for the increased production of
hydrogen, acids and solvents.

Polarization resistance, Rp, refers to the resistivity of the
electrolytes around the electrode. This could be due to resist-
ance of the electron transfer by the microbe or the insulation

Fig. 6 Electrokinetic analysis of butanol fermentation by C. sporogenes BE01 in rice straw hydrolysate medium at various pH and CaCO3 concen-
trations based on the Tafel plot.
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effect of the products formed on the electrodes surface. For a
reactor to be active in an electron transfer and product for-
mation, the polarization resistance should be low.39 Fermenta-
tion with an initial pH of 6.4 showed less Rp compared with
the other pH ranges (Fig. 7e). Polarization resistance was high
in the reactor without CaCO3 supplementation and decreased
with a supplementation of 5 g L−1 CaCO3, but the resistance
increased slightly with increased CaCO3 supplementation

(Fig. 7f) and as stated before it could be either due to the
resistance or insulation effect.

3. Conclusions

Clostridium sporogenes BE01 is capable of producing 7 g L−1 of
VFAs and 1.2 L L−1 of hydrogen during butanol fermentation

Fig. 7 Oxidative slope, reductive slope and polarization resistance during butanol fermentation. (a) Oxidative slopes at different initial pH. (b) Oxi-
dative slopes with different CaCO3 concentrations. (c) Reductive slopes produced at different initial pH. (d) Reductive slopes with different CaCO3

concentrations. (e) Polarization resistance at different initial pH. (f ) Polarization resistance with different CaCO3 concentrations.
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in rice straw hydrolysate with 30 g L−1 of glucose. 7.3 g L−1 of
total solvents were produced, of which 5 g L−1 was butanol.
Butanol and ethanol production was in a ratio of 7 : 3. Fe–S
clusters, Cyt bc1 and quinones were the common electron
transporters involved during butanol fermentation. CaCO3

supplementation resulted in high solvent formation by stimu-
lating the electron transport system mediated by protein
bound FAD, 4Fe–4S, NADH and flavoproteins. The presence of
peak for protein bound FAD was found until 96 h at pH 6.4
and pH 6.8 with 10 g L−1 CaCO3 supplemented medium. The
involvement of 4Fe–4S clusters, NAD/NADH, protein bound
FAD and flavoproteins during active butanol fermentation pre-
sents the possibility of an electron bifurcation system
mediated by a membrane bound complex, probably Rnf. The
Tafel plot revealed that rice straw hydrolysate supplemented
with CaCO3 had a low polarisation resistance, Rp, and required
less activation energy for the reduction metabolism making it
more favourable for solvent production during fermentation
by C. sporogenes BE01.

4. Experimental methods
4.1. Pretreatment and hydrolysis of rice straw

Dilute acid (0.4% w/w H2SO4) was used to pretreat the rice
straw obtained from a local vendor. Rice straw was knife
milled to reduce the size and the pretreatment was carried out
for 1 h at 120 °C with a solid loading of 15% (w/w). The
pentose fraction obtained (liquid stream) was separated from
the solids by filtration and centrifugation. Pretreated rice straw
was dried at room temperature till the excess moisture was
removed. Commercial cellulase (Zytex India ltd, Mumbai) with
an enzyme activity of 80 FPU mL−1 was used for the enzymatic
hydrolysis of the pretreated rice straw at 50 °C. 30 FPU per gds
was used for the hydrolysis and the run was continued for
48 h. The suspended and unhydrolyzed solid mass was separ-
ated by centrifugation at 10 000 rpm for 20 min.

4.2. Fermentation

C. sporogenes BE01 was maintained in its spore form at 4 °C.
The spores were heat shocked at 80 °C for 2 min and the tem-
perature was immediately brought down by placing in an ice-
water bath. The heat shocked spores were cultured in a TGY
medium to develop the preinoculum. Actively growing cells
were inoculated into a fresh TGY medium for inoculum gene-
ration. The highly motile 12 h old culture was inoculated into
rice straw hydrolysate. Rice straw hydrolysate was made anaero-
bic by cooling under an nitrogen atmosphere after heat sterili-
zation at 120 °C for 10 min. Bottles with loosened caps
were placed inside the anaerobic chamber for 12 h before
inoculation.

Fermentation was carried out for 96 h in 250 mL bottles
containing 200 mL of rice straw hydrolysate medium with 10%
(v/v) inoculum. As described in the previous reports, CaCO3

and yeast extract (Himedia, India) were the only supplemen-
tation and cysteine HCl (Himedia, India) was added as a redu-

cing agent.20 The initial pH of the hydrolysate was 4.8, but the
addition of yeast extract and CaCO3 increased the pH of the
medium to 6, which was further adjusted to the required pH
using 1 N NaOH and 1 N HCl. The initial pH of 5.8, 6.2, 6.4
and 6.8 with 10 g L−1 CaCO3 was chosen to study the effect of
the initial pH on the bioprocess. For analysing the effect of pH
on glucose utilisation and fermentation, rice straw hydrolysate
was supplemented with 10 g L−1 of CaCO3 and the pH was
adjusted to 5.8, 5.2, 6.4 and 6.8 and three different concen-
trations of CaCO3 (0 g L−1, 5 g L−1 and 10 g L−1) were investi-
gated to understand the role and effect of CaCO3 on the redox
microenvironment of rice straw hydrolysate inoculated with
C. sporogenes BE01. The pH change of the fermentation
medium was monitored at 24 h intervals and samples were
collected for analysis.

4.3. Analytical methods

4.3.1. Total gas estimation and hydrogen analysis. Total
gas produced by C. sporogenes BE01 was analysed by mounting
a 20 mL gradient syringe on every reactor by piercing it
through a rubber septum. The gas produced displaced the
piston of the syringe and the gradient helped to measure the
gas produced. The head space volume of the reactor was also
taken in to consideration.

Percentage hydrogen analysis of the total gas produced was
carried out by gas chromatography (Nucon) equipped with a
thermal conductivity detector (TCD). A 2.1/8″ × 2 m SS column
with a molecular sieve stationary phase of size 60/80 mesh was
used for gas separation at a temperature of 60 °C. The carrier
gas used was nitrogen at a flow rate of 20 mL min−1 under
1 kg cm−2 pressure. The detector and injector were operated at
80 and 50 °C, respectively.

4.3.2. Sugars and acids analysis. Glucose was quantified
using a 100 × 7.8 mm fast carbohydrate analysis column
(Biorad) by HPLC (Shimadzu prominence UFLC) equipped
with a RI detector. The oven temperature was maintained at
85 °C and de-ionized water used as the mobile phase at a flow
rate of 0.8 mL min−1. Volatile fatty acids were analysed using a
Rezex® ROA organic acid analysis column (Phenomenex) and
PDA detector at an oven temperature of 50 °C. The mobile
phase used for the separation was 0.05 M H2SO4 at a flow rate
of 0.6 mL min−1.

4.3.3. Solvents analysis. Butanol and ethanol were ana-
lyzed by gas chromatography (Chemito GC 8610). A Poropak
Q® column was used for the separation with a gradient oven
temperature rise from 150 °C to 200 °C at a heating rate of
8 °C min−1. A flame ionization detector (FID) was used and the
detector temperature was maintained at 250 °C. The sample
was injected with an injector temperature of 150 °C.

4.3.4. Electrochemical analysis. Cyclic Voltammetry (CV)
was performed using a potentiostat–glavanostat system
(Autolab-PGSTAT12, Ecochemie) to understand the redox
microenvironment and electron transport mediators involved
during the fermentation process. Analysis was performed
during the fermentation in real time conditions. Aliquots of
20 mL from the reactor were sampled and voltammograms
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were recorded under anaerobic fermentation conditions using
platinum wire as the working electrode and a carbon rod as
the counter electrode against the reference electrode (Ag–
AgCl(S)). A potential ramp was applied in the range of +0.5 V
to −0.5 V at a scan rate of 30 mV s−1. The redox currents and
peaks were recorded for further analysis.

Electrokinetic analysis was performed by plotting the Tafel
slope using autolab software. The natural log of the anodic
current (ln I) was plotted against the applied range (E/V) for
presenting the Tafel plot. The oxidation slope and reduction
slope for every voltammogram was recorded and plotted
against time to understand the fluctuations in the redox
environment with respect to time.39 The current versus voltage
curve approximates a straight line and the slope obtained from
this is the polarisation resistance, Rp.

40

Acknowledgements

LDG would like to acknowledge the Council of Scientific and
Industrial Research (CSIR) for providing a senior research
fellowship for her PhD work.

Notes and references

1 V. Garcia, J. Pakkila, H. Ojamo, E. Muurinen and
R. L. Keiski, Renewable Sustainable Energy Rev., 2011, 15,
964–980.

2 E. M. Barnes and M. Ingram, J. Appl. Bacteriol., 1956, 19,
117–128.

3 G. Rao and R. Mutharasan, Appl. Environ. Microbiol., 1987,
53, 1232–1235.

4 E. Marsili, J. B. Rollefson, D. B. Baron, R. M. Hozalski and
D. R. Bond, Appl. Environ. Microbiol., 2008, 74, 7329–7337.

5 R. Geshlagi, J. M. Scharer, M. Moo-Young and C. P. Chao,
Biotechnol. Adv., 2009, 764–781.

6 M. Juanita and W. Guangyi, Int. J. Hydrogen Energy, 2009,
34, 7404–7416.

7 KEGG PATHWAY: Pyruvate metabolism – Clostridium aceto-
butylicum. Genome.jp. Retrieved 2010-07-01.

8 Y. Tao, Y. Chen, Y. Wu, Y. He and Z. Zhou, Int. J. Hydrogen
Energy, 2007, 32, 200–206.

9 G. Matta-el-Ammouri, R. Janati-Idrissi, A. M. Junelles,
H. Petitdemange and R. Gay, Biochimie, 1987, 69, 109–115.

10 W. S. Lee, A. S. May Chua, H. K. Yeoh and G. C. Ngoh,
J. Chem. Technol. Biotechnol., 2014, 89, 1038–1043.

11 X. Yang, M. Tu, R. Xie, S. Adhikari and Z. Tong, AMB
Express., 2013, 3, 3, DOI: 10.1186/2191-0855-3-3.

12 B. Han, V. Ujor, L. B. Lai, V. Gopalan and T. C. Ezeji, Appl.
Environ. Microbiol., 2013, 79, 282–293.

13 C. Richmond, B. Han and T. C. Ezeji, Cont. J. Microbiol.,
2011, 5, 18–28.

14 A. G. Le Bourhis, J. Doré, J. P. Carlier, J. F. Chamba,
M. R. Popoff and J. L. Tholozan, Int. J. Food Microbiol.,
2007, 25(113), 154–163.

15 T. J. Montville, N. Parris and L. K. Conway, Appl. Environ.
Microbiol., 1985, 49, 733–736.

16 Z. Ying and Y. Shang-Tian, J. Biotechnol., 2004, 110, 143–157.
17 E. E. Stinson and K. A. Naftulin, J. Ind. Microbiol., 1991, 8,

59–63.
18 J. Masset, M. Calusinska, C. Hamilton, S. Hiligsmann,

B. Joris, A. Wilmotte and P. Thonart, Biotechnol. Biofuels,
2012, 5, 35, DOI: 10.1186/1754-6834-5-35.

19 H. Zhang, M. A. Bruns and B. E. Logan, Water Res., 2006,
40, 728–734.

20 L. D. Gottumukkala, B. Parameswaran, S. K. Valappil,
K. Mathiyazhakan, A. Pandey and R. K. Sukumaran, Biore-
sour. Technol., 2013, 145, 182–187.

21 S. Y. Lee, J. H. Park, S. H. Jang, L. K. Nielsen, J. Kim and
K. S. Jung, Biotechnol. Bioeng., 2008, 101, 209–227.

22 G. Karp, in Cell and Molecular Biology: Concepts and experi-
ments, John Wiley & Sons, 6th edn, 2009, ch. 4, pp.
173–205.

23 S. G. Mayhew, in Flavoprotein protocols, ed. S. K. Chapman
and G. A. Reid, Springer, 1999, vol. 131, ch. 4, pp. 49–60.

24 R. Klaus-Heinrich, in eLS, John Wiley & Sons Ltd,
Chichester, 2001, http://www.els.net, DOI: 10.1038/npg.
els.0001373.

25 T. Ohnishi, Biochim. Biophys. Acta, 1998, 1364, 186–206.
26 I.-J. Lin, E. B. Gebel, T. E. Machonkin, W. M. Westler and

J. L. Markley, Proc. Natl. Acad. Sci. U. S. A., 2005, 102,
14581–14586.

27 P. Berto, M. Di Valentin, L. Cendron, F. Vallese,
M. Albertini, E. Salvadori, G. M. Giacometti, D. Carbonera
and P. Costantini, Biochim. Biophys. Acta, 2012, 1817, 2149–
2157.

28 Y. Zhang and T. C. Ezeji, Biotechnol. Biofuels, 2013, 6, 66,
DOI: 10.1186/1754-6834-6-66.

29 K. Brzoska, S. Meczynska and M. Kruszewski, Acta Biochim.
Pol., 2006, 53, 685–691.

30 W. Buckel and R. K. Thauer, Biochim. Biophys. Acta, 2013,
1827, 94–113.

31 B. Ward, in Molecular medical microbiology: Bacterial energy
metabolism, ed. Y.-W. Tang, M. Sussman, D. Liu, I. Poxton
and J. Schwatrzman, Academic press, 2nd edn, 2014, vol. 1,
ch. 11, pp. 201–234, 2002.

32 M. Calusinska, T. Happe, B. Joris and A. Wilmotte, Micro-
biology, 2010, 156, 1575–88.

33 H. Seederf, W. F. Fricke, B. Veith, H. Bruggemann,
H. Liesegang, A. Strittmatter, M. Miethke, W. Buckel,
J. Hinderberger, F. Li, C. Hagemeier, R. K. Thauer and
G. Gottschalk, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
2128–2133.

34 H. Nagarajan, M. Sahin, J. Nogales, H. Latif, D. R. Lovley,
A. Ebrahim and K. zengler, Microb. Cell Fact., 2013, 12, 118.

35 M. Calusinska, T. Happe, B. Joris and A. Wilmotte, Micro-
biology, 2010, 156, 1575–1588.

36 H. Bruggemann, A. Wollherr, C. Mazuet and M. R. Popoff,
in Genomes of foodborne and waterborne pathogens: Clostri-
dium botulinum, ed. P. Fratamico, Y. Liu and S. Kathariou,
ASM press, 2010, ch. 13.

Green Chemistry Paper

This journal is © The Royal Society of Chemistry 2015 Green Chem., 2015, 17, 3047–3058 | 3057

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ar
ch

 2
01

5.
 D

ow
nl

oa
de

d 
on

 1
2/

4/
20

24
 6

:3
0:

01
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/C5GC00310E


37 A. T. Carter and M. W. Peck, Res. Microbiol., 2014, DOI:
10.1016/j.resmic.2014.10.010.

38 A. J. Bard and L. R. Faulkner, in Electrochemical Methods:
Fundamentals and Applications, Wiley, 2nd edn, 2000, ch. 3,
pp. 105–134.

39 S. V. Mohan, C. N. Reddy, A. N. Kumar and J. A. Modestra,
Bioresour. Technol., 2013, 147, 424–433.

40 Metrohm Autolab B.V, http://www.ecochemie.nl/download/
Applicationnotes/Autolab_Application_Note_COR03.pdf
(accessed February 2015).

Paper Green Chemistry

3058 | Green Chem., 2015, 17, 3047–3058 This journal is © The Royal Society of Chemistry 2015

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ar
ch

 2
01

5.
 D

ow
nl

oa
de

d 
on

 1
2/

4/
20

24
 6

:3
0:

01
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/C5GC00310E

	Button 1: 


