Effect of particle size on magnetic and electric transport properties of La0.67Sr0.33MnO3 coatings†
Abstract
A systematic study of polycrystalline La0.67Sr0.33MnO3 (LSMO) manganite coatings has been undertaken to analyse the effect of various particle sizes on the magnetic and electric transport properties. In order to acquire a series of samples with different particle sizes, the samples were prepared by a sol–gel method and were subjected to annealing at four different temperatures. With decreasing particle sizes, the magnetization decreases while the coercivity increases, which is attributed to the magnetically disordered surface layer. More attractively, the electrical transport properties can be systematically manipulated by particle sizes and so can the low field magnetoresistance (LFMR) values. Emphasis is placed on how the particle size affects the temperature dependence of resistivity, and three conduction models are explored to describe the transport behaviours in three temperature regions. A minimum resistivity is observed in the low temperature region in the presence and absence of a magnetic field, which can be mainly explained as due to the intergranular spin polarized tunneling (ISPT) through the grain boundaries (GBs) in polycrystalline materials.