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Strong second harmonic generation in SiC, ZnO,
GaN two-dimensional hexagonal crystals from
first-principles many-body calculations

C. Attaccalite,*a A. Nguer,a E. Cannucciab and M. Grüningc

The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional

hexagonal crystals is calculated by using a real-time first-principles approach based on Green’s function

theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach

allows one to go beyond the independent particle description used in standard first-principles nonlinear

optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal

local field effects and excitonic effects. Our results show that the SHG spectra obtained using the

latter approach differ significantly from their independent particle counterparts. In particular they show

strong excitonic resonances at which the SHG intensity is about two times stronger than within the

independent particle approximation. All the systems studied (whose stabilities have been predicted

theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of

frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale

nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from

about 40–80 pm V�1 in ZnO and GaN to 0.6 nm V�1 in SiC. The latter value in particular is 1 order of

magnitude larger than values in standard nonlinear crystals.

1 Introduction

Following the 2010 Nobel Prize in Physics awarded to Geim and
Novoselov for their experiments on graphene,1 increasing
attention has been dedicated to the peculiar electronic and
optical properties of two-dimensional (2D) crystals and to their
possible technological applications. For example, the photo-
luminescence and optical absorption of MoS2 and more in
general of transition metal dichalcogenides have been studied
extensively. Nonlinear optical properties and specifically
second-harmonic generation (SHG) are also the subject of
current research. First, SHG is emerging as a spectroscopic tool
to non-invasively characterize films of 2D crystals. In fact SHG
can probe the number of layers, their orientation and stacking,
the edges of the layers, the presence of defects and also the
interaction with the substrate.2–5 Second, studies on transition
metal dichalcogenides indicated that those materials have
quite a strong SHG and suggested that they can be integrated

in photonic circuits to realize nonlinear optical nanoscale
devices.2,6,7 Finally, besides SHG other nonlinear optical pro-
perties are predicted to be particularly strong in 2D crystals,
as for example nonlinear optical rectification.8

In a previous report9 we have studied h-BN and MoS2 2D
crystals using first-principles real-time simulations based on
Green’s function theory10,11 that includes local-field effects,
quasiparticle corrections and excitonic effects. Results from
our simulations confirmed the strong SHG of these 2D crystals
and highlighted the importance of including many-body effects
and going beyond the independent particle (IP) model for those
systems. In the IP model [Fig. 1(a)], the optical properties are
deduced from the joint-density of states.12 Spectral features
correspond to minima, maxima and saddle points of the joint-
density of states. Introducing many-body effects, and specifi-
cally electron–hole interaction, may give rise to bound exciton
states [Fig. 1(b)] that strongly modify spectral properties. In 2D
crystals excitonic effects are expected to be particularly strong
due to geometrical confinement and poor screening.9 Indeed,
we have found strong excitonic one- and two-photon resonances
in the SHG of h-BN and MoS2 2D crystals, affecting the spectral
shape and increasing the intensity by a factor 2 when compared
with the IP level of theory.

Here we investigate the SHG in GaN, SiC and ZnO 2D
hexagonal crystals by first-principles numerical simulations.
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The stability of those crystals has been predicted theoretically.13,14

Recently, few layer films of ZnO and SiC have been as well realized
experimentally: ultrathin hexagonal SiC nanoflakes (0.5–1.5 nm)
have been obtained by exofoliation,15 and monolayers and bilayers
of ZnO have been prepared by reactive deposition of Zn on
Au(111).16 Because of their non-centrosymmetric structure GaN,
SiC and ZnO 2D crystals are expected to have non-negligible SHG.
In fact, a SHG of the order of pm V�1 has been measured for
ZnO bulk and thin films.17 Interestingly, the SHG at about 1.2 eV
(Nd:YAG laser frequency) has been observed to vary with thickness
and to be more than 10 times larger than in bulk for very thin films
(about 40 nm).18 Those effects have been attributed to excitonic
resonances.19 For SiC, SHG in hexagonal bulk SiC and thin films
have been measured to be of the order of pm V�1 at Nd:YAG laser
frequency.20,21 Theoretical calculations at the IP level predicted
for the hexagonal monolayer a value that is at least two orders of
magnitude larger.22 Finally, bulk and thin films GaN have also
shown a SHG of the order of few pm V�1.23–25 GaN is of particular
interest because its electronic and thermal characteristics are
well-suited for high power applications and because of the possi-
bility of integrating it on a silicon substrate. In fact, GaN has been
already integrated on a silicon substrate for SHG.26

The SHG is calculated using a first-principles real-time
approach based on Green’s function theory (Section 2). Both
local-field, quasiparticle corrections and excitonic effects are
included in our simulations. Our results predict (Section 3) a
remarkable SHG intensity for GaN, SiC and ZnO 2D crystals in
the transparency region. Many-body effects are again found to
be key in the quantitative description of SHG: excitonic effects
enhance the intensity up to about a factor two and redistribute
spectral weight significantly.

2 Computational methods

Ground-state densities are obtained within the Kohn–Sham
(KS) density functional theory. Density functional theory also
provides the KS band structure that however cannot be used
directly to extract band gaps but it can be considered to be a

good starting point mean-field Hamiltonian for many-body
perturbation theory. We then use the GW approach—briefly
described here in Section 2.1—to obtain the quasiparticle band
structures perturbatively from the KS one (for a review of
methods available to predict electronic energies see e.g. Walsh
and Butler27). The obtained quasiparticle energies are then
input to the calculations for optical properties within the
Bethe–Salpeter equation framework (see Section 2.1 for the
linear response and Section 2.2 for the real-time approach).

2.1 Quasiparticle band structure and optical absorption

The quasiparticle band structures are obtained within the GW
approach. Specifically, we use non-self-consistent GW (denoted
as G0W0) in which the screened Coulomb potential, W, and the
Green’s function, G, are built from the KS eigensolutions
{enk;|nki} (with k the crystal wave vector and n the band index)
and then the quasiparticle energies are obtained from:

eQP
nk = enk + ZnkDSnk(enk). (1)

In eqn (1)

Znk = [1 � qDSnk(o)/qo|o=enk
]�1,

is the renormalization factor and

DSnk � hnk|DS|nki,

where

DS = S � V xc,

is the difference between S = GW, the GW self-energy, and V xc, the
exchange–correlation functional used in the KS calculations.28

The optical-spectra are calculated by solving the Bethe–
Salpeter equation (BSE):29

eQP
ck � eQP

vk

� �
As

vck þ
X
v0c0k0

vckjKehjv0c0k0h iAs
v0c0k0 ¼ OsAs

vck: (2)

Here, the electronic excitations are expressed in a basis of
electron–hole pairs |vcki corresponding to transitions at a given
k from a state in the valence band (v) with energy eQP

vk (hole) to a
conduction-band (c) state with energy eQP

ck (electron). As
vck are the

expansion coefficients of the excitons in the electron–hole basis
and the Os are the excitation energies of the system.

2.2 Second-harmonic generation

Nonlinear optical properties are obtained within the real-time
approach suggested by Souza et al.30 This approach was
recently implemented by the authors within a first-principles
framework.11 In this approach the time-dependent Schrödinger
equation

i�h
d

dt
vmkj i ¼ H

sys
k þ iE � ~@k

� �
vmkj i: (3)

is integrated to obtain the time-dependent valence states, |vmki.
The latter is the periodic part of the Bloch states that deter-
mines the system polarization.30 In the r.h.s. of eqn (3),
Hsys

k is the system Hamiltonian—which is discussed later in

this section; the second term, E � ~@k, describes the coupling

Fig. 1 Schematic representation of (a) the SHG within the IPA, or (b)
accounting for electron–hole interaction. In (a) SHG is given simply by
transitions between the valence (blue) and conduction (yellow) manifolds;
in (b) electron–hole may lead to the formation of a bound exciton,
an atomic-like level (dark red) into the fundamental band gap that strongly
modifies the SHG.
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with the external field E in the dipole approximation. As we
impose the Born–von Kármán periodic boundary conditions,

the coupling takes the form of a k-derivative operator ~@k. The
tilde indicates that the operator is ‘‘gauge covariant’’ and
guarantees that the solutions of eqn (3) are invariant under
unitary rotations among occupied states at k (see Souza et al.30

for a thorough discussion of this point).
From |vmki, the time-dependent polarization of the system

PJ along the lattice vector a is calculated as

Pk ¼ �
ef

2pv
jaj
Nk?

X
k?

Im log
aNkk�1

kk

det S k; kþ qk

� �
; (4)

where S(k,k + q
J
) is the overlap matrix between |vnki and

|vmk+qJ
i. Furthermore, v is the unit cell volume, f is the spin

degeneracy, NkJ
and Nk>

are respectively the number of k points
along and perpendicular to the polarization direction, and
q
J

= 2p/(NkJ
a). Finally, the second harmonic coefficient is

extracted from the power series of the polarization in the
laser field E

P = w(1)E + w(2)EE +. . . (5)

as detailed in Attaccalite et al.11

In eqn (3), the model Hamiltonian chosen for Hsys
k , determines

the level of approximation in the description of correlation effects
in the SHG spectra. In this work we use two different models for
the system Hamiltonian: (i) the independent-particle (IP) model,

HIP
k � HKS

k , (6)

and (ii) the GW + BSE model,

HGW+BSE
k � HKS

k + DHk + Vh(r)[Dr] + SSEX[Dg], (7)

where

Dr � r(r;t) � r(r; t = 0)

is the variation of the electronic density and

Dg � g(r,r0;t) � g(r,r0;t = 0)

is the variation of the density matrix induced by the external
field E.

In eqn (6) and (7), HKS is the unperturbed KS Hamiltonian.
In eqn (7), the second term, DHk contains the quasiparticle
corrections to KS energies as obtained from eqn (1). The next
term, Vh(r)[Dr] is the Hartree10 potential and is responsible
for the local-field effects31 originating from system inhomo-
geneities. The last term SSEX, is the screened-exchange self-
energy that accounts for the electron–hole interaction,29 and is
given by the convolution between the screened interaction W
and Dg. In the linear response limit the GW + BSE model
reproduces the optical absorption calculated as in eqn (2), as
shown both analytically and numerically in Attaccalite et al.10

2.3 Numerical details

Density functional calculations of the ground-state density,
optimized cell geometry and KS electronic structure are per-
formed using the QUANTUMESPRESSO code.34 The KS wave functions

are expanded in plane-waves and the effects of core electrons
are simulated by norm-conserving pseudopotentials.35 The
exchange–correlation functional is treated within the local
density approximation (LDA).36,37 Table 1 reports the relevant
parameters for the specific KS calculations.

The quasiparticle and optical absorption calculations are
carried out using the Yambo code.38 The screened Coulomb
potential W has been evaluated within the random-phase
approximation (RPA). In the GW approach we used the
Godby–Needs plasmon-pole model to approximate the dynami-
cal behavior of W,39 while in the BSE framework we use the
static approximation.29 The number of unoccupied bands used
in the expansion of the self-energy and Green’s function for SiC,
ZnO and GaN are respectively 100, 150 and 100. We use a cutoff
of 3 Ha for the off-diagonal components of the dielectric matrix
eGG0. The same parameters are used to calculate the static
dielectric constants.

Finally the SHG spectra are calculated using a development
version of the Yambo code where eqn (3) and (4) have been
implemented.11 In the SSEX, the W is calculated once (at its
zero-field value) using the same approximations and numerical
parameters as in the BSE [eqn (2)].10 In both the IP and the
GW + BSE we consider 3 valence and 5 conduction bands for
SiC, 8 valence and 5 conduction bands for ZnO and 6 valence
and 5 conduction bands for GaN. The quasiparticle corrections
in DHk [eqn (7)] are introduced as a scissor operator Dvc, and
valence (conduction) stretching parameters av(c) (Table 2) fitted

Table 1 Parameters used in the KS calculations. PP: pseudopotential
components and scheme for each atom. ‘‘vBC’’ and ‘‘TM’’ refer respectively
to the von Barth–Car32 and Troullier–Martins33 schemes. Ecut: energy
cutoff for the plane-waves. k-grids: number of k points of the Monkhorst–
Pack grid in each of the two periodic dimensions for the self-consistent (SC)
calculation of the density, and to obtain the KS eigensolutions for the IP and
BSE calculations; a: lattice parameter obtained from the geometry optimiza-
tion; d: the effective thickness used to evaluate the second harmonic
response (see text)

PP Ecut(Ha) k-grids a (Å) d (Å)

SiC Si:(3s)2(3p)2 30 16 (SC) 3.069 3.51
C:(2s)2(2p)2 80 (IP)
Type: vBC 21 (BSE)

ZnO Zn:(3d)10(4s)2 40 16 (SC) 3.208 2.60
O:(2s)2(4p)4 40 (IP)
Type: TM 21 (BSE)

GaN Ga:(3d)10(4s)2(4p) 40 16 (SC) 3.169 2.59
N:(2s)2(2p)3 40 (IP)
Type: TM 21 (BSE)

Table 2 Parameters extracted from the GW calculations by a linear fit and
used to account for the quasiparticle corrections in the GW + BSE real-
time simulations. See text

Dvc (eV) ac av

SiC 1.32 1.70 1.25
ZnO 1.28 0.90 1.90
GaN 1.76 1.11 1.03
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from the GW calculations by assuming a linear relation between
the quasiparticles and KS energies.

As we are working with a plane-wave basis set and thus with
periodic boundary conditions, we simulate isolated monolayers
by a slab supercell approach with a 30 a.u. inter-sheet distance
along the z-direction. In the calculations of the screened
Coulomb potential W, we cutoff the long-range interaction
between the periodic images by using the scheme of Rozzi et al.40

Eqn (3) is integrated numerically for a time-interval of 55 fs
using the same numerical approach of Souza et al.30 (originally
taken from Koonin et al.41) with a time-step of Dt = 0.005 fs that
guarantees accuracy and stable results. We use sinusoidal
monochromatic laser fields polarized along y, with an intensity
of I = 500 kW cm�2. In eqn (3) we add a dephasing term with
t = 6 fs to simulate a finite broadening of about 0.2 eV.11

To evaluate the static dielectric constant and the SHG of the
two-dimensional layers we used an effective thickess equal to
the interlayer distance in the corresponding bulk material
for ZnO42 and GaN43 and equal to the one used by Wu et al.22

for the SiC, as reported in Table 1.

3 Results

In this section for hexagonal SiC, ZnO and GaN monolayers we
discuss the electronic band structure, obtained from the G0W0

calculations [eqn (1)], the optical absorption spectra obtained
within the IP and GW + BSE approaches [eqn (2)] and finally the
SHG obtained from real-time simulations again within both the
IP and GW + BSE approaches [eqn (3)–(7)].

3.1 SiC monolayer

We found (Table 3) that within the GW approximation the SiC
monolayer has a direct minimum gap at K of 3.96 eV (LDA gives
2.59 eV). For the K–M indirect gap our GW calculations gives
4.00 eV (LDA gives 2.54 eV). The values we found agree within
one-tenth of eV with previous reports of Lu et al.44 and of
Bekaroglu et al.,45 though GW predicts an indirect band gap
material there. On the other hand, Hsueh et al.46 found by GW
calculations that the minimum band gap is direct at K (though
again really close to the indirect at K–M), but reported G0W0

corrections that are 0.5 eV larger than ours. This quite large
disagreement may be the effect of the different plasmon-pole
model used to approximate the frequency behaviour of the
screened Coulomb potential. In fact it has been recently
shown47 that the Hybertsen–Louie plasmon-pole model (used
by Hsueh et al.46) tends to overestimate the band gap when

compared with ‘‘full frequency’’ calculations (that means with-
out any plasmon-pole approximation) or with the Godby–Needs
plasmon-pole model, used in this work. The static dielectric
constant calculated within the RPA is 8.25, smaller than 9.66
found (experimentally) for the bulk.48

At the IP level the absorption spectrum [Fig. 2(b)] presents
two main features in the 0–6 eV laser-frequency range: a
shoulder at 2.59 eV and a peak at 3.24 eV. They correspond
to transitions from the top-valence to the bottom conduction
band predominantly along the K–M direction. In the SHG
intensity [Fig. 2(a)] one recognizes the corresponding two-
photon and one-photon resonances respectively at about
1.3 eV, 1.6 eV and 2.6 eV. The shoulder at 3.2 eV results from
the interference of one-photon resonance at 3.24 eV and two-
photon resonances with higher energy transitions. Near 4 eV is
also visible a two-photon resonance with transitions involving
higher lying conduction bands. The shape and the magnitude
of the SHG intensity spectrum agree well with the calculations
(at the same level of theory) by Wu et al.22

Fig. 2(d) shows the absorption spectrum at the GW + BSE
level. Clearly, correlation effects, more specifically electron–
hole interaction, dramatically change the monolayer absorp-
tion. The van Hove singularities are now replaced by sharply
bound excitons peaks at about 2.7 eV, 3.2 eV, 3.4 eV and 3.6 eV.
The binding energies of the lowest bright exciton is thus 1.2 eV.
The relative height and position of the peaks, and the binding

Table 3 Band gap Eg within the KS-density functional theory and the
G0W0 approximation. Static dielectric constant e0 within the RPA. SHG
intensity (in pm V�1) at zero frequency within the IP approximation (w(2)

0 )
and within the GW + BSE framework (w(2))

Sys. EKS
g (eV) EG0W0

g ðeVÞ e0 |w(2)
0 (0)| |w(2)(0)|

SiC 2.54 3.96 8.25 122(1) 141(1)
ZnO 1.70 3.01 5.83 10.0(1) 14.7(7)
GaN 2.36 4.27 7.33 18.07(4) 33.6(3)

Fig. 2 Optical absorption and SHG in SiC. Panels (a) and (c): |w(2)
aab(o)|

respectively at the IP (eqn (6)) and GW + BSE level (eqn (7)). For a direct
comparison the IP spectrum is also shown in panel (c) in gray dashed line.
Panels (b) and (d) shows the optical absorption calculated at o a o/2 for
both the IP and GW + BSE level of approximation. The green continous
vertical line represents the calculated minimum direct gaps within KS [(b)]
and G0W0 [(d)] approaches. The dashed green vertical line corresponds to
half the minimum gap.
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energy for the first exciton are in quite good agreement with
calculation of Hsueh et al.46 The absolute position of the peaks
differs instead by about 0.4 eV because of the difference in the
GW quasiparticle corrections discussed previously. Note that
there is a nearly perfect cancellation between the quasiparticle
correction (shift towards higher energies) and the effect of the
electron–hole attraction (shift towards lower energies) so that
the exciton position almost coincides with the corresponding
KS minimum gap at K. A similar cancellation is observed as well
for the MoS2 monolayer as shown before.49 As a consequence
the position of the main features in the SHG at the GW + BSE
level [Fig. 2(c)] is very similar to the IP one. However, when
observed at the same scale, excitonic resonances at two (E1.4 eV
and 1.7 eV) and one-photon (E2.7 eV) are clearly dominating
the spectrum enhancing the intensity by a factor of about 1.5.
Fig. 3(a) shows the separate contributions of the SHG real and
imaginary components. By comparing the GW + BSE and IP
results the effect of excitonic resonances is clearly recognizable
from the pronounced features at 1.35 eV in the imaginary part
and 1.65 eV in the real part. By extrapolating the low energy part
of the SHG spectra we obtain an estimate for the zero-frequency
SHG (Table 3). Also in the static limit, out of resonance, excitonic
effects enhance the SHG by a factor of almost 1.3 with respect to
the IP approximation. The IP value is in good agreement with
Wu et al.,22 once accounting for the different convention used by
the authors.50

3.2 ZnO monolayer

For the ZnO monolayer the GW approximation gives a direct
minimum gap at G of 3.01 eV (LDA gives 1.70 eV) in agreement
with the results of Wei et al.51 For the static dielectric constant

we found a value of 5.83 (within the RPA) much larger than the
experimental value for the bulk of 3.74, but close to the value
calculated for the bulk within RPA by Shishkin and Kresse.52

In the bulk the large difference between the calculated and
experimental dielectric constant was attributed to the large self-
interaction error for the d bands in the KS calculations. In
that case overestimating the screening resulted in an under-
estimation of the GW band gap.

Again the optical absorption spectrum at the IP level
[Fig. 4(b)] presents typical van Hove singularities expected in
the 2D case:12 a shoulder at about 1.70 eV, corresponding to the
minimum in the joint-density of states at G, and a peak at about
7.2 eV corresponding to transitions between the two lowest
conduction and two higher valence bands for points close to
M and K (saddle points). The SHG intensity at this level of
theory [Fig. 4(a)] presents similar features: a broad shoulder
between 0.8 and 2 eV corresponds to two- and one-photon
resonances with the minimum gap transition at G; the peak at
3.5 eV is a two-photon resonance with the transition at points
close to K and M. Remarkably, at this level of theory the ZnO
monolayer presents a very weak SHG intensity when compared
with the other 2D hexagonal monolayer studied in this or our
previous work.9

Similarly to SiC, when we include correlation effects within
the GW + BSE approximation, we observe the formation of (bound)
exciton states. The optical absorption spectrum [Fig. 4(d)] presents

Fig. 3 Real (magenta lines) and imaginary (blue lines) part of SHG in SiC
(top panel), ZnO (mid panel) and GaN (bottom panel) calculated with both
the IP (dashed lines) and the GW + BSE (continuos lines) approaches.

Fig. 4 Optical absorption and SHG in ZnO. Panels (a) and (c): |w(2)
aab(o)|

respectively at the IP (eqn (6)) and GW + BSE level (eqn (7)). For a direct
comparison the IP spectrum is also shown in panel (c) in gray dashed line.
Panels (b) and (d) shows the optical absorption calculated at o a o/2 for
both the IP and GW + BSE level of approximation. The continuos vertical
line represents the calculated fundamental band gaps within KS [(b)] and
G0W0 [(d)] approaches. The dashed vertical line corresponds to half the
fundamental band gap.
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two main exciton peaks at about 1.6 eV and 6.2 eV. Good
agreement is found with the spectrum in the work of Wei
et al.51 The first exciton peak is mainly associated with the
transitions between the first two valence bands and the last
conduction bands around G. Its exciton binding energy of 1.5 eV
cancels almost completely the quasi-particle blue-shift, so that the
spectrum onset is close to the IP one, as observed for SiC and
MoS2.9 Finally, the SHG intensity [Fig. 4(c)] is enhanced by
correlation effects, with three strong features at low energy
(at about 0.8 eV, 1.5 eV and 1.7 eV) corresponding to the two-
and one-photon resonances with the exciton at 1.6 eV. Fig. 3(b)
shows the contribution from the real and imaginary part of SHG to
those features. Note that at resonances the intensity is enhanced
by about 2 times compared with the IP case. A smaller enhance-
ment factor (about 1.5) is observed instead for the SHG in static
limit in Table 3.

3.3 GaN monolayer

By G0W0 calculations we found the GaN monolayer has an
direct band gap of 4.27 eV (at G) whereas the LDA the gap is
indirect (K–G) and gives 2.36 eV. (Table 3). Results for the gap
are close to those reported by Chen et al.,53 but smaller than
those reported by Ismail–Beigi.54 As previously discussed for
the SiC the difference can be ascribed to the plasmon-pole
model used to approximate the frequency dependence of the
screening. The static dielectric constant from RPA is 7.33,
smaller than the value of 8.9 measured in the bulk.55 In Fig. 4

the IP optical absorption spectrum [panel (b)] shows a shoulder
at 2.6 eV (from G) and a peak at about 5.1 eV (from M and K). The
SHG [(a) panel] then has a weak two-photon resonance peak
around 1.3 eV, a strong peak at 2.55 eV (that corresponds to the
interference of one-photon and two-photon resonances with the
transitions at about 2.4 eV and at 5.0 eV) and a one-photon
resonance with the transitions at about 5.1 eV. At the GW + BSE
level the optical absorption spectrum [panel (d)] is again strongly
modified. The onset for the absorption is shifted towards higher
energies due to the quasiparticle corrections and the spectrum
shows two exciton strong peaks at 3.1 eV and 4.8 eV. The position
and relative intensity of the peaks are in fair agreement with the
calculations of Ismail–Beigi.54 For the SHG spectrum [Fig. 5(c)
and 3(c)], excitonic effects enhance the intensity at the two-
photon resonances (1.55 eV and 2.1 eV), by a factor of about
2 and 1.5 respectively. In the static limit the intensity is as
well increased by a factor 2. To note that the onset of the
absorption spectrum is blue shifted by 0.5 eV with respect to
the IP spectrum as quasiparticle shifts are larger than the energy
red-shift from the electron–hole interaction for the first exciton.
On the other hand in the SHG the strongest feature corre-
sponding to the two-photon resonance with the exciton at
4.8 eV (at the GW + BSE level) is red-shifted with respect to the
strongest feature in the IP spectrum. As a consequence, within
the GW + BSE approach the strongest SHG is in the trasparency
region. Conversely at the IP level the strongest SHG is in a region
in which the system absorbs.

4 Conclusions

We have performed first-principles calculations of SHG of 2D
hexagonal crystals with broken inversion symmetry both at the
IP level and GW + BSE level of approximation. At the IP level, the
SHG intensity spectra reflect closely the electronic structure
of the particular material showing two- and one-photon reso-
nances in correspondence of singular points of the joint density
of states. On the other hand, the comparison with the more
accurate GW + BSE approach clearly shows the importance of
including correlation effects. In fact we observed an enhance-
ment of up to 2 times of the SHG intensity at excitonic
resonances at the GW + BSE level. Furthermore the example
of GaN is emblematic: the IP approach predicts that the light-
absorption is significant at the frequencies for which the SHG
is the strongest; the GW + BSE approach instead predicts that
the most intense SHG is in the trasparency region of the
material.

Remarkably (also considering the subnanometric effective
thickness), for the studied 2D hexagonal crystals we obtain
a SHG intensity of the order of tens of nm V�1 for SiC and
40–80 pm V�1 for ZnO and GaN, smaller than what we pre-
dicted for 2D MoS2

9 and to what has been observed experi-
mentally for MoS2

2 and WS2,6 but still large. For comparison
conventional nonlinear crystal used in frequency doubling of
Nd:YAG and Ti:sapphire lasers are of the order of 10 pm V�1.
Furthemore all the systems under study are transparent below

Fig. 5 Optical absorption and SHG in GaN. Panels (a) and (c): |w(2)
aab(o)|

respectively at the IP (eqn (6)) and GW + BSE level (eqn (7)). For comparison
panels (b) and (d) shows the optical absorption calculated at o a o/2 for
both the IP and GW + BSE level of approximation. The continuos vertical
lines represent the calculated fundamental band gaps within KS [(b)] and
G0W0 [(d)] approaches. The dashed vertical lines corresponds to half the
fundamental band gap.
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1.5 eV (above 825 nm) and the SHG has peaks at 0.93–1.16 eV (1068–
1333 nm) for ZnO—thus in the region of Nd:YAG laser emission
lines—1.55 eV (800 nm) for GaN and 1.36 eV–1.60 eV (775–911 nm)
for SiC—in the emission range of the Ti:sapphire laser.
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