Issue 8, 2015

Tensile strain induced half-metallicity in graphene-like carbon nitride

Abstract

Polymeric graphitic carbon nitride materials exhibit exotic properties superior to graphene which are promising for applications in energy conversion, environment protection, and spintronics devices. We propose a two-dimensional (2D) framework of graphene-like carbon nitride composing of C9N7 units connected by nitrogen atoms. From first-principles, we demonstrate that this 2D carbon nitride has a spin-polarized ground state and exhibits metallic electronic properties, in contrast to commonly studied graphitic carbon nitrides which are nonmagnetic semiconductors. Additionally, half-metallicity can be achieved in this framework by applying tensile strain. The realization will be beneficial for spintronics as a candidate material for a spin-current generator. More importantly, this provides a feasible way to realize half-metallicity in experiments.

Graphical abstract: Tensile strain induced half-metallicity in graphene-like carbon nitride

Article information

Article type
Paper
Submitted
29 Nov 2014
Accepted
16 Jan 2015
First published
26 Jan 2015

Phys. Chem. Chem. Phys., 2015,17, 6028-6035

Author version available

Tensile strain induced half-metallicity in graphene-like carbon nitride

H. Li, H. Hu, C. Bao, J. Hua, H. Zhou, X. Liu, X. Liu and M. Zhao, Phys. Chem. Chem. Phys., 2015, 17, 6028 DOI: 10.1039/C4CP05560H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements