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Stacking disorder in ice I

Tamsin L. Malkin,a Benjamin J. Murray,*a Christoph G. Salzmann,b Valeria Molinero,c

Steven J. Pickeringa and Thomas F. Whalea

Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable

hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that

what has been called cubic ice in the past does not have a structure consistent with the cubic crystal

system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal

sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work

on ice with stacking disorder including ice that was called cubic ice in the past. We also present new

experimental data which shows that ice which crystallises after heterogeneous nucleation in water

droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of

around �15 1C. This supports the results from molecular simulations, that the structure of ice that

crystallises initially from supercooled water is always stacking-disordered and that this metastable ice

can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show

that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via

other routes. The emerging picture of ice I is that of a very complex material which frequently contains

stacking disorder and this stacking disorder can vary in complexity depending on the route of formation

and thermal history.

Introduction

In many cases when a crystalline material forms from a liquid,
gas or solution, or when an unstable material recrystallizes, the
initial phase to form is metastable. This metastable phase may
then transform to the thermodynamically stable phase if the
kinetics are favourable.1 This is thought to be true for the nucleation
and crystallisation of ice I, a material of fundamental importance
in a range of sciences and technologies; from cryopreservation2,3

to ice formation in aviation fuel,4,5 and not least the atmosphere
where metastable ice may be a dominant phase in our planet’s
coldest clouds.6–8

Metastable forms of ice I can be made through various routes,9

including by re-crystallisation from high-pressure phases;10–14 freez-
ing of confined water in mesopores;15–17 heating of low-density
amorphous ice;18–21 heating of glassy aqueous solutions;22,23

deposition of water vapour;9,24 freezing of water and aqueous
solutions;6,25–31 freezing of nanometre scaled water clusters;32–34

and by decomposition of gas hydrates.9,35 Despite more than

seven decades of research, our understanding of the nature and
crystal structure of this commonly encountered metastable ice I
is still rapidly evolving.

In the past, metastable ice I had been identified as having a
cubic crystal structure with space group Fd%3m, whereas the stable
structure of ice I is hexagonal with space group P63/mmc.36 Both
of these forms of ice I are made up of layers composed of six-
membered puckered rings of hydrogen-bonded water molecules
and only differ in the way the layers are stacked on top of each
other (see Fig. 1). In ice Ih, each layer is a mirror image of the
previous layer; whereas in ice Ic each successive layer is shifted a
distance equal to half the diameter of a six-membered ring.36,37

However, it is becoming increasingly clear that the ice I phase
which forms in many experiments does not fit either of these
two well-defined crystal structures. Instead, metastable ice I is
typically made up of a combination of both cubic and hexa-
gonal stacking sequences which together do not poses cubic nor
hexagonal symmetry (Fig. 2) and it has the trigonal space group
P3m1.9,12,13,30 In order to emphasise the fact that metastable ice I
is neither cubic nor hexagonal, and not a simple mixture of the
two, Malkin et al.30 recommended calling this material stacking
disordered ice I (ice Isd). We use the term stacking disordered
ice I or ice Isd in this paper for metastable ice I which contains
stacking disorder and reserve the term cubic ice (ice Ic) for the
hypothetical form of ice I with a cubic structure as envisaged by
König24 more than 70 years ago.
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In the mid 1980s Kuhs et al.14 were the first to appreciate
that their samples of ice I, which they referred to as ice Ic,
contained appreciable amounts of stacking faults. Specifically,
they suggested that features in their neutron diffraction patterns
were due to a small probability of finding hexagonal sequences
in a structure dominated by cubic sequences. These hexagonal
sequences were thought of as stacking faults in a cubic structure,
but this early study lacked any quantitative analysis of the
density of these stacking faults. At the time, Elarby-Aouizerat
et al.38 suggested that while stacking faults could account
for some non-cubic features, they could not account for the

all the non-cubic features in the diffraction patterns. With the
development of a detailed stacking fault model of ice, Hansen
et al.12,13 were able to quantitatively show that all the non-cubic
features in ice I formed from ice V and ice IX could be accounted for
with stacking disorder. They also showed that correlations between
stacking faults was different dependent on the route of formation.
Morishige and Uematsu16 also showed through modelling diffrac-
tion patterns that ice in mesopores contained significant stacking
disorder. After posing the question of ‘is it cubic?’, Moore and
Molinero39 arrived at the conclusion that metastable ice I contains
comparable fractions of cubic and hexagonal layers. Subsequently,
Malkin et al.30 showed that ice resulting from the homogeneous
freezing of water droplets at around �40 1C was made up of a fully
randomised mixture of 50% cubic and hexagonal sequences. More
recently, Kuhs, et al.9 showed that ices generated in multiple ways,
including through vapour deposition and recrystallization of gas
hydrates, all contains stacking disorder to varying degrees and
possesses a trigonal, rather than cubic, space group. In summary,
there is compelling evidence that ice I has a propensity to be
stacking disordered.

In this perspectives article we initially review the diffraction
data in the literature, which shows that the non-cubic features
of the diffraction patterns associated with stacking disorder are
ubiquitous to all metastable ice I that we are aware of. The data
also suggests that there are strong differences in the nature of the
stacking disorder observed depending on method of generation.
We discuss computational studies of formation of stacking
disorder during the nucleation and growth of ice, including
recent results on stacking disorder in ice nucleated hetero-
geneously.30,39–58 We present new experimental data for ice
formed from water droplets in which freezing was initiated
heterogeneously. In order to do this we built on our knowledge
of heterogeneous ice nucleation,59–63 in order to select materials
which nucleate ice over a range of temperatures between 237 and
263 K. These results are unique in that they allow us to system-
atically probe the evolution of ice structure as a function of ice
nucleation temperature. In addition we also present new data for
ice Isd formed via the recrystallization of ice II. We then model
this diffraction data to quantify the number density and nature
of cubic and hexagonal stacking sequences, and summarise this
information on a so-called ‘‘stackogram’’. This new type of plot
helps to visualise the differences in the nature of stacking
disorder in ice Isd made through different routes.

The ubiquity of stacking disorder:
evidence from diffraction patterns

Diffraction patterns provide information on long range order
(and disorder) in crystal structures. A diffraction pattern of a well-
defined crystalline material contains sharp Bragg peaks, the posi-
tion of which can be related to distance between adjacent planes in
a crystal structure known as d-spacings. The Bragg condition is met
in an ordered crystal where the long range order leads to con-
structive interference satisfying Bragg’s law and giving rise to sharp
diffraction peaks. If for some reason, such as the introduction

Fig. 1 Stacking of layers in hexagonal (A) and cubic (B) ice. The vertical is
normal to the (0001) basal surface of hexagonal ice, and the (111) surface of
cubic ice. Only oxygen atoms are shown, connected by hydrogen bonds.

Fig. 2 Possible stacking sequence in stacking disordered ice (ice Isd). Only
oxygen atoms are shown which are connected by hydrogen bonds.
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of stacking disorder, the long range order in a crystal is inter-
rupted this influences the resulting diffraction pattern.

The calculated diffraction patterns of well-defined ice Ih and
ice Ic are shown in Fig. 3 for both neutron and X-ray diffraction.
Together with these patterns we also plot literature diffraction
patterns for ice I which was formed in a variety of ways. Table 1
summarises the experimental conditions and routes through
which this ice was formed. These patterns clearly do not
correspond to hexagonal ice and in the past it has been
generally concluded that this ice is therefore cubic. However,
comparison with the perfect cubic pattern also reveals a poor
match. The literature patterns clearly contain a peak at a
d-spacing of 3.86 Å which is in the same position as the most
intense peak in the hexagonal ice pattern. These experimental
patterns of metastable ice I also have a region of raised
intensity between 3.43 and 3.86 Å d-spacing and in addition

the relative ratio of the peak intensities does not match the
calculated patterns. Inspection of high resolution patterns also
reveals other less obvious inconsistencies.12,30 To varying
degrees the experimental patterns in Fig. 3 all contain features
inconsistent with the cubic crystal system and to the best of our
knowledge there is no diffraction pattern of ice which is a good
match to that expected for well-defined cubic ice. Instead,
metastable ice I always contains features associated with
stacking disorder.

Stacking disorder in ice from a
computational perspective

The propensity of ice I to grow with stacking-disorder has been
observed in a large number of molecular dynamics and Monte

Fig. 3 A selection of (A) X-ray and (B) neutron diffraction patterns of metastable ice I from the literature. Many of these patterns were digitised from the
printed plots in the respective papers, and the quality of some of the older reproductions is relatively poor. Nevertheless, signatures of stacking disorder
are apparent in all of these patterns, many of which were presented as ice Ic. The most obvious signatures of stacking disorder are the region between B4
and 3.25 Å and the peak at B3.8 Å. See details of each experiment and references in Table 1.
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Carlo simulations.30,39–42,44–58,64–66 Molecular simulations explore
spatial and temporal regimes complementary to those accessible
through experiments, providing microscopic insights on the
evolution of cubic and hexagonal ice sequences in the ice
embryos,39–46,48,50,52,58 the development and evolution of stacking
disorder as the ice crystallites grow and consolidate,30,39,44,47 as
well as on the extent and mechanisms of formation of stacking
faults upon growth of well-defined faces of ice Ih and ice Ic at
various degrees of supercooling.51,53,55–57

The study of the structure of ice during nucleation and growth
through molecular simulations faces three main challenges. First,
the accuracy of the water models in describing the ice-liquid
equilibrium temperature for ice I, and the relative stability of the
cubic and hexagonal ice polymorphs. Of the most popular fully
atomistic models of water, only those in the TIP4P family
(TIP4P,67 TIP4P-Ew,68 TIP4P/2005,69 TIP4P/ice70) predict that ice
I is the most stable crystal at ambient pressure.70,71 Of these, only
TIP4P/ice predicts a melting temperature for ice Ih close to the
experimental value, 272.2 vs. 273.15 K; the others underestimate
Tm by at least 20 K.69–71 To our knowledge, the relative stability of
hexagonal (Ih) and cubic (Ic) ice I polymorphs has not been
established for any of these models. A significant issue related
to the use of fully atomistic models is their computational cost,
which limits the sampling time and size of simulation systems
that can be modelled. The coarse-grained monatomic water
model mW was developed to alleviate the costs of simulations
of liquid water and ice, while keeping an accurate description of
the structures and phase transitions between them.72 mW models
water as a single particle that interacts through short-range two-
body and three-body interactions; the latter encourage tetrahedral
configurations that mimics the effect of hydrogen bonds at less
than 1% of the computational cost of atomistic models.72

Hexagonal ice is the most stable crystal phase of mW water at
ambient pressures, with a melting temperature of 274 K.72

Cubic ice is marginally less stable than hexagonal ice for the
mW model.40,65,72 The second significant challenge arises from
the rare nature of ice nucleation events, which calls for very
long simulation trajectories or the use of advanced simulation
methods. Ice nucleation by long brute force simulations has
been achieved for mW water under a broad range of super-
cooled conditions40,49,52,73–82 and for TIP4P water supercooled
at negative pressures.83 Among the advanced methods to sample
rare events, umbrella sampling,84,85 metadynamics86–88 and for-
ward flux sampling89–92 have been successfully used to nucleate
ice at various degrees of supercooling and with several water
models.50,93–103 The ice polymorphs obtained using different
sampling methods are not always identical, even when the
model and simulation conditions are the same.94,95 Differences
in outcomes may have two origins: first, some are equilibrium
sampling methods (e.g. umbrella sampling and metadynamics),
while others are intrinsically non-equilibrium (e.g. forward flux
sampling); second these methods have been implemented
with different order parameters used to bias or identify the
formation of ice. This leads to the third challenge for the study
of the structure of ice formed in molecular simulations: the
need for methods to identify water molecules as liquid, cubic
ice and hexagonal ice. Several algorithms have been proposed
for this purpose. Brukhno and co-workers introduced the
first set of order parameters that distinguished cubic and
hexagonal ice, however these were not rotationally invariant
hence they cannot be used to identify arbitrarily oriented
crystallites.50 Moore and co-workers then introduced CHILL,40

a rotationally invariant algorithm based on the correlation of
bond-order parameters,104,105 which distinguishes cubic ice,
hexagonal ice and liquid water from the number of staggered
and eclipsed O� � �O bonds.40 Variants of the latter approach
using bond-order parameters were also introduced by Li et al.,96

and Sanz et al.106

Table 1 Experimental details for literature diffraction data shown in Fig. 3

Plot Ref.

A1 Hexagonal ice Numerically simulated
A2 Cubic ice Numerically simulated
A3 Ice II. Annealed from 100–165 K at 0.1 K min�1 This study
A4 Pure water droplets dvm E 1 mm; Tf = 231.7 K Malkin et al.30

A5 32.4 wt% citric acid solution droplets; Tf = 219 K Murray26

A6 36.2 wt%, (NH4)3H(SO4)2 droplets; Tf = 178 K Murray and Bertram31

A7 43 wt% (NH4)3H(SO4)2 solution droplets; Tf = 188 K Murray et al.6

A8 Formed in a 19 nm mesopores of silica at 220 K Morishige and Uematsu16

A9 Deposition at 90 K. Annealed to 180 K at 5 K min�1 Shilling et al.18

A10 D2O ice IV. Annealed from 90–151 K at 5 K min�1 Salzmann et al.11

A11 H2O droplets quenched at 170 K. Measured at 113 K Kohl et al.20

A12 Water droplets quenched at 190 K Mayer and Hallbrucker25

A13 Recrystallized from D2O ice IX at 160 K Bertie and Jacobs145

A14 Recrystallized from ice IX held at 160 K Bertie and Jacobs145

A15 Vitreous (condensed H2O vapour o133 K) to ice I Dowell and Rinfret19

B1 Hexagonal ice Numerically simulated
B2 Cubic ice Numerically simulated
B3 Decomposed deuterated CO2 hydrates at 175 K Kuhs et al.9

B4 Condensed D2O vapour at 175 K Kuhs et al.9

B5 Recrystallized from ice V at 175 K Hansen et al.12,13

B6 Recrystallized from ice IX at 175 K Hansen et al.12,13

B7 Recrystallized from ice II at 78 K Kuhs et al.14
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Unbiased simulations of homogeneous ice nucleation with
the coarse-grained mW water model52,107,108 reveal that the ice
embryos already have cubic and hexagonal ice sequences.39,40,42–45

The same was found in the nucleation of ice using the atomistic
TIP4P/2005 and TIP4P water models combined with advanced
sampling methods that do not bias the structure of the
embryo.30,46,50 Ice embryos need to have at least B200 water
molecules for stacking to be discernible, but they contain mixed
cubic and hexagonal ice sequences from their inception
(Fig. 4).39 The fraction of cubic stacking sequences (cubicity) of
the crystallites nucleated from deeply supercooled water
increases with their size, plateauing at about 60%.39,43 The ratio
of cubic to hexagonal sequences is similar for ice nucleated from
bulk water, solutions with salt, and water confined in nanopores
and in nanoparticles.39,40,42–44,47,49 The stacks of cubic and
hexagonal sequences in the ice nucleated and grown from deeply
supercooled water are very short and their order seems to be
random.30,39,50 These stacks reorganize as the crystallites con-
solidate in the process of growth.39 The evolution of the stacking
disordered structures into hexagonal ice is outside of the time
scale accessible to brute-force molecular simulations.

The free energies of the stacking disordered and hexagonal ices
have been reported to be withinB100 J mol�1,18,25,39,40,51,52,107,109–111

and calculations indicate that the free energy barrier for the creation
of a critical embryo that is purely cubic or purely hexagonal is
lower than for the creation of a stacking-disordered embryo.45

However, unbiased simulations of nucleation and growth of ice
result in stacking disordered structures with comparable
amount of cubic and hexagonal layers.30,39–44,47,49–51,55–57 It is
possible to grow ice Ih from a hexagonal ice seed and ice Ic from
a cubic seed using Umbrella Sampling simulations that very
slowly bias the size of the embryo, sampling equilibrium
configurations for each embryo size.45 These results suggest
that stacking disorder has a kinetic origin: it is controlled by the

non-equilibrium process of ice growth. A recent study, however,
suggests that stacking disorder is thermodynamically favored.65

Hexagonal or cubic ice exposing the basal or [111] planes,
respectively, have been reported to grow stacking disordered in
simulations, irrespective of the water model used and the
degree of supercooling.51,53,55–57 A configuration of a large-scale
molecular dynamics simulation of ice grown at 270 K from liquid
mW water is shown in Fig. 5. The simulation started with a slab
of hexagonal ice exposing the basal planes to the supercooled
liquid; 41 of the 81 new layers formed have cubic order.
Interestingly, the cubicity of the ice grown at 270 K is lower
than for ice grown at higher supercooling.51,57 A recent study of
the equilibrium interface between ice and liquid in TIP4P/2005
water shows extensive reconstruction of the interface of the
originally hexagonal ice slab, resulting in a stacking disordered
ice interface with 60% cubic ice and 40% hexagonal ice in
contact with liquid water.66 A systematic study of ice growth at
different temperatures and a characterization of the relative
stabilities of cubic and hexagonal ice for the water models
employed would be needed to assess the temperature depen-
dence of the cubicity of ice grown in simulations.

Ice tends to grow in a layer by layer fashion in the direction
perpendicular to the stacking plane, (111) of ice Ic or (0001) of
ice Ih.51,55,57 Recent studies57 reveal that hexagonal and cubic
arrangements, which only differ by a small displacement of the
molecules with respect to the underlying layer (Fig. 1), occur
with similar probability on the basal surface of ice, and their
competitive formation and dissolution slows down the growth
rate of ice in the direction perpendicular to the basal plane.57

This in-layer competition does not occur in the prismatic and
secondary prismatic planes,51,55–57,112,113 which only produced
stacking faults in simulations at very high supercooling.53

Formation of stacking disordered ice can be considered a case
of extensive cross-nucleation114–116 between ice polymorphs.
Cross-nucleation involves the nucleation of one crystal structure
(polymorph) on the face of another, and usually favours the
faster growing polymorph, irrespective of whether it is the most
stable crystal.116,117 Cross-nucleation between polymorphs that

Fig. 4 Development of stacking disorder within an ice embryo in mW water
crystallized at 180 K. Adapted from ref. 39. Panels (a) to (e) display the evolution
of the cubic (red) and hexagonal (green) ice features within a growing embryo.
The lines connect pairs of molecules with cubic or hexagonal order, which
only differ by a small displacement of the molecules with respect to the
underlying layer, see Fig. 1. Pairs of molecules with cubic and hexagonal
ice order are distinguished by the number of eclipsed and staggered inter-
molecular bonds within the pair, identified with the CHILL algorithm:40

molecules in hexagonal ice have three staggered and one eclipsed bond,
and molecules in cubic ice have four staggered bonds. Well-defined stacks are
not observed in embryos with less than B200 molecules.

Fig. 5 Stacking disordered ice grown at 270 K. Water molecules are shown in
green if they belong to a hexagonal sequence, red if they belong to a cubic
sequence and in gray if they belong to the liquid. The simulation started with a
slab of six layers of hexagonal ice (indicated by a black line below the picture)
exposing the basal faces to the supercooled liquid. The simulations were
performed with a periodic simulation cell containing 110 592 molecules
modeled with the mW water model,107 which has a melting temperature of
274 K.107 The CHILL algorithm40 was used to identify cubic and hexagonal ice.
Cubic layers represent 40 out of the 81 new layers grown.
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have a common plane, as is the case for (111) of ice Ic and (0001)
of ice Ih, is very facile as it does not require the nucleation of
an interfacial nucleation layer to seamlessly connect the two
polymorphs.117,118 Clathrate hydrates provide other examples of
cross-nucleation between water crystal polymorphs.117,118 The
main differences between cross-nucleation in ice and in clath-
rates is that not only the stabilities of ice Ih and the hypothetical
ice Ic polymorphs are almost identical, but that they apparently
also have similar rates of growth.

Although cubic and hexagonal ice layers can stack seamlessly,
in-layer competition between hexagonal and cubic order can
result in the formation of defects when domains with distinct
order propagate in the same layer.57 Large-scale simulations
of ice growth revealed the presence of lines of defects, coupled
5- and 8-membered water rings, in the boundary between
domains of cubic and hexagonal order coexisting within a single
layer.53 It has been proposed that these defects facilitate the
nucleation of stacking faults.53 A recent study, however, suggests
that the 5–8 defects are not the origin but the result of in-layer
competition between cubic and hexagonal order in the newly
formed layer of ice.57 The density of these defects should
increase with supercooling as the rate of nucleation of new
layers on the growing ice surface becomes faster. The role that
these defects and their annealing play on the long-term
decrease of stacking disorder in ice is an open question that
warrants further investigation.

Heterogeneous nucleation of ice has been only recently
achieved in molecular simulations.48,58,119 The two surfaces
studied, graphitic carbon and kaolinite, produce distinct pre-
ferential orientation of the critical ice embryos on the surface.
Ice embryos expose the basal plane to the graphite surfaces,
resulting in the growth of stacking disordered ice with the
stacking plane parallel to the surface.48 Kaolinite, on the other
hand, favours the formation of hexagonal ice embryos that
expose the prismatic plane to the mineral surface.58 These
embryos, however, are finite in size and expose all faces to
liquid water. This implies that, upon growth, they can develop
stacking faults. The experimental results in the next section
show that ice nucleated by kaolinite presents significant stacking
disorder, supporting the evidences from molecular simulations
that the non-equilibrium growth process plays an important role
in the development of stacking disorder in ice.

Heterogeneous freezing of water
droplets

In the past, the structure of ice crystallised after homogeneous
nucleation of pure water droplets at around �40 1C,27,30 and
solution droplets below �40 1C,6,27–29,31,120 have been investi-
gated. However, to date the structure of ice which crystallises
following heterogeneous nucleation in water droplets has only
been investigated through molecular simulations,48,58 and has
not been subject to laboratory experiments. In this section, we
present experiments where the aim was to quantify the degree
of stacking disorder in ice which crystallises in droplets where

nucleation was induced by well characterised heterogeneous
ice nucleants. This builds on our previous research on the
quantification of the efficiencies with which various solid
materials nucleate ice when immersed in water droplets.59–

62,121

These experiments involved cooling water droplets contain-
ing solid nucleating agents at a controlled rate, measuring the
freezing temperature and subsequently recording a diffraction
pattern of the ice which crystallised. The technique is similar to
that described previously,26,27,30,31 but with the exception that
we now work with droplets containing nucleants. Fine powders
of a variety of minerals and other solids were suspended in
ultra-pure water (18.2 MO). The aqueous suspensions were
mixed with paraffin oil (Fisher Scientific) and lanolin (Aldrich
Chemical Company) in order to create water-in-oil emulsions
with droplets of a volume median diameter, dvm, of 17 � 3 mm.
This was significantly larger than the 0.9 mm used by Malkin
et al.30 and ensured that each droplet contained a representative
number of sub-micron particles. The droplets sizes were then
determined using an optical transmission microscope with
a 10� objective. The X-ray diffractometer (Bruker D8 Advance,
Cu Ka) used in these experiments was configured in standard
2y reflection geometry and was equipped with an Anton Paar
TTK450 temperature control stage.

In order to determine the temperatures at which the water
droplets froze, the diffraction angle (2y = B401) of a strong
reflection associated with all types of ice I was continually
monitored upon cooling at 30 K min�1. This peak is insensitive
to the phase of ice, only varying in intensity by 1.9% between ice
well-defined Ih and ice Ic and being no larger for ice Isd (according
to our calculated patterns, which is consistent with our measure-
ments) and therefore provides a useful proxy for the amount of ice
crystallised. The cooling rate of 30 K min�1 was chosen on the
basis that we wanted to quantify stacking-disorder in ice which
initially crystallised, and slower cooling rates allow more time for
recrystallization of stacking-disorder. The area under the peak at
B401 was normalised to the peak area at 173 K where all the
droplets were frozen and the peak area was at its maximum. Plots
of the fraction of pure water droplets (0.9 and 17 mm) and droplets
containing kaolinite (B17 mm) frozen, as a function of tempera-
ture during cooling, are shown in Fig. 6A.

It is clear from Fig. 6A that the addition of kaolinite particles
induces freezing at higher temperatures than droplets containing
no particles (the median freezing temperature increases by 1 to
5 K depending on the weight fraction of kaolinite). This means
that the mode of nucleation shifts from homogeneous to hetero-
geneous. In addition, the solid lines in Fig. 6A are the freezing
curves predicted on the basis of literature parameterisations;60,121

the excellent agreement indicates that the presence of the oil
and surfactant did not influence nucleation. The fraction
frozen curves for droplets containing a range of other ice
nucleants that triggered heterogeneous nucleation with median
freezing temperatures as high as 257 K are shown in Fig. 6B.

Diffraction patterns of the sample between 2y = 20–701 were
recorded at 173 K, a temperature at which stacking-disorder
was assumed to not change on the timescale of the diffraction
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measurement. The range of 2y covers all of the strong ice Ic and
ice Ih reflections, and the diffraction pattern for frozen droplets
containing 0.1 wt% kaolinite is compared with the diffraction
pattern for ice resulting from homogeneous freezing (for
0.9 mm droplets30) in Fig. 7. Also shown are the calculated ice
Ih and ice Ic patterns. Despite ice nucleating heterogeneously
on kaolinite, the ice Isd produced is almost indistinguishable to
that seen after homogeneous nucleation, which was previously
shown by Malkin et al.30 to have fully random stacking. Utilising
molecular simulations, Cox et al.58 found that the prismatic face
of hexagonal ice nucleates on kaolinite. Our results suggest that
even if nucleation of one phase or another is preferred, the growth
of stacking disordered ice subsequent to nucleation is controlled
by kinetic factors during crystal growth.

A fully random stacking sequence is consistent with a two-
dimensional nucleation (or layer-by-layer growth) mechanism,122

where each successive layer nucleates independently and can
either stack in a cubic or hexagonal fashion. Our result indicates
that the probability of nucleating a cubic or hexagonal sequence
is equal. This also implies that the crystal structure of the

macroscopic frozen droplet is independent of the structure of the
initial critical cluster that nucleates. This is important, because it
is often assumed that nucleation of one particular phase will
define or serve as a template for the resulting crystal growth.1 This
has implications for the interpretation of the analysis of nuclea-
tion data using classical nucleation theory (CNT).

Several authors used experimentally determined nucleation
rates to establish ice-water interfacial energies on the basis that
ice Ic nucleates.32,121,123,124 Murray et al.121 justified this assump-
tion on the basis of X-ray diffraction data reported in a separate
study,27 which clearly contain features consistent with stacking-
disorder. Huang and Bartell32 used electron diffraction data to
identify their nanometre sized ice particles as ice Ic, but also note
that there were ‘imperfections in the longer-range internal
order’, which may also be consistent with stacking-disorder. In
order to employ classical nucleation theory to derive the ice-
water interfacial energy, these authors used the best available
estimate of the thermodynamic properties of ice Ic.32,121,123,124

Given the intrinsic quantitative inaccuracies of CNT, the
additional assumption that the critical cluster has the same
structure as the final macroscopic crystal is in question, these
interfacial energies should be taken with some caution.

Previous studies have shown that ice Isd transforms to ice Ih

increasingly rapidly as temperature is elevated.8,13,27 For droplets
suspended in an oil emulsion, where the only recrystallization
mechanism is a solid-to-solid transformation, as opposed to a
vapour or solvent mediated route,31 the time required for recrystalli-
zation increases rapidly below about 238 K.27 Hence, during

Fig. 6 Fraction of droplets frozen as a function of temperature. (A) Shows
curves for droplets of pure water and droplets containing various weight
fractions of kaolinite cooled at 30 K min�1. Median droplet size was held
almost constant in these experiments. The solid lines are based on time-
dependent parameterisations of homogeneous freezing of pure water121

and heterogeneous freezing by kaolinite.60 (B) Shows curves for a range
of solid nucleating agents. Error bars are omitted as they are comparable
to symbol size.

Fig. 7 Experimental diffraction patterns for water droplets containing
0.1 wt% of kaolinite, cooled at a rate of 30 K min�1 compared with frozen
pure water droplets of 0.9 mm from Malkin et al.30 Simulated diffraction
patterns using DIFFaX of well-defined ice Ih and ice Ic are also shown. The
gaps in the experimental pattern are where diffraction peaks from the
sample support are observed.
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cooling at 30 K min�1 droplets which froze below this tempera-
ture did not have the opportunity to transform to the stable
ice Ih, locking the ice in the metastable structure in which it
initially crystallised. We hypothesise that ice which initially
forms at higher temperatures is also stacking-disordered, but
freezing at higher temperatures may provide an opportunity for
the ice to anneal. In order to explore this hypothesis, solid

particles of different types with the capacity to nucleate ice at
different temperatures were introduced into the droplets. The
resulting diffraction patterns after complete crystallization are
shown in Fig. 8. The patterns are arranged in order of lowest
freezing temperature at the top and a pattern of fully annealed
ice Ih at the bottom for comparison. It is evident from the observa-
tions that on increasing freezing temperature the peaks unique to
ice Ih at 26, 33 and 441 all increase in intensity, the broad feature
between 22 and 271 disappears, all peaks become increasingly
sharp and the relative intensities of the peaks generally
approaches that of ice Ih. This evolution of the diffraction
patterns is consistent with higher freezing temperatures allow-
ing the initially stacking-disordered ice to anneal leading to ice
which is structurally closer to ice Ih.

Modelling of stacking disorder in ice I

In order to quantitatively characterize the stacking disorder in ice
I, we employed the DIFFaX (Diffracted Intensities from Faulted
Xrystals, v1.813) computer program for calculating powder
diffraction patterns of crystals containing stacking disorder.125

DIFFaX uses a general recursion algorithm and requires informa-
tion about the structure of the layer, the stacking probabilities
and the symmetry relationships between the stacked layers. The
calculated pattern is convolved with a profile function in order to
account for finite crystallite size and instrument broadening
effects. DIFFaX can be configured to take into account varying
complexities in stacking disorder. The simplest form of stacking
disorder in ice is where cubic and hexagonal sequences are
randomly arranged. For example, Malkin et al.30 showed that ice
resulting from homogeneous nucleation in pure water droplets
was fully random with 50% cubic and 50% hexagonal stacking.
More complex stacking can also be possible where there is
correlation or memory in the stacking sequence. For example,
once in a hexagonal stacking sequence the probability of transi-
tioning back to cubic may be small, but when it does there may
also be a low probability of transitioning back again. This would
result in extended clusters of cubic and hexagonal sequences.
In this example, the correlations are between nearest neighbour
layers (1st order memory effects; Kuhs et al.9 define this as an
interaction range, s, of 3), but there can also be correlations
between sequences further apart (2nd, 3rd, etc. order memory
effects; s = 4, 5 etc.). Kuhs et al.9 and Hansen et al.12,13 found
that the ice they made through a variety of routes contained
2nd order (s = 4) memory effects. In what follows, we explore the
possibility of complex memory effects.

Stacking disordered ice with no memory effects (s = 2) can be
described in DIFFaX using a single stacking probability, Fc,
which indicates the likelihood of cubic stacking. The probability
of hexagonal stacking, Fh, is simply 100� Fc. To model 1st order
(s = 3) memory effects, it is necessary to use two independent
stacking probabilities, Fcc and Fhc which define the probabilities
of cubic stacking after a previous cubic or hexagonal stacking
events, respectively. The two hexagonal stacking probabilities,
Fch and Fhh, are obtained from 100� Fcc and 100� Fhc. In this

Fig. 8 Experimental and model best fit X-ray diffraction patterns for frozen
droplets containing a variety of solid inclusions (dvm B 17 mm), which froze
over a range of median freezing temperatures (Tf). (A) Is an example of
experimental data (crosses) and MCDIFFaX fit (solid line) for droplets
containing microcline. (B) Contains experimental (solid line) and MCDIFFaX
fit (dashed line) diffraction patterns for droplets containing a range of ice
nucleants. The data was normalized to the largest peak. The fitted stacking
probabilities are listed in Table 3. The MCDIFFaX fits here included 2nd order
memory effects. The results were indistinguishable from the 1st order model
indicating 2nd order memory effects were not significant.
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paper we have modified the original terminology used by
Malkin et al.30 so that we can describe higher order memory
effects (the relationship between the different notations for
stacking probabilities is summarised in Table 2).

Since both, Fcc and Fhc, can vary independently between 0
and 100% there are a wide range of possible ice Isd structures.
The relationship between ice structure, and Fcc and Fhc is
illustrated in the ‘‘stackogram’’ shown in Fig. 9. If the two
stacking probabilities Fhc and Fcc are equal then there is no 1st
order memory in the stacking sequences of the ice structure
and we refer to this as random stacking (red line in Fig. 9)
which can be described with Fc only. The top right of the
stackogram (Fig. 9) represents perfect ice Ic, while the bottom
left describes perfect ice Ih. In the case where Fhc and Fcc are
not equal then there is a memory in the stacking sequences and
there are a number of distinct regimes which can be defined.
Anywhere to the right of the random line is a regime with the
same close-packed planes tending towards the strictly

alternating stacking sequence in the third dimension (polytype)
at the bottom right of the stackogram (hexagonal, cubic,
hexagonal, cubic etc.). As will be seen later no known ice sample
falls in this half of the stackogram. The region above the
random line is characterised by extended sequences of either
cubic or hexagonal stacking, or extended regions of both. The
top left of the diagram is for a sample consisting of a 50%
mixture of bulk cubic and bulk hexagonal crystallites.

In order to illustrate the sensitivity of the diffraction pattern
to stacking disorder and 1st order memory effects we have
plotted an array of calculated diffraction patterns in Fig. 9. We
focus on the region around the 111 peak of cubic ice where the
pattern is particularly sensitive to stacking disorder. The red
line indicates a combination of stacking probabilities that
produces random stacking (Fhc = Fcc). Above this line Fhc o
Fcc whereas, below Fhc 4 Fcc. One striking feature of this plot
is the strong sensitivity of the diffraction pattern to the values
of Fhc and Fcc, which means that finding a unique fit to the
diffraction pattern is highly likely. This is illustrated in Fig. 10
where the 1st order memory model was used to produce
patterns for many combinations of Fhc and Fcc, and the good-
ness of the fit is expressed as w2. There is a clear single
minimum and no local minima. Malkin et al.30 allowed Fhc

and Fcc to vary independently, hence they made no a priori
assumption about which type of stacking was present in their
ice (i.e. random or 1st order memory effects). They found that
for ice which nucleated homogeneously from pure water there
was no memory effect and the resulting ice was fully stacking
disordered (i.e. Fhc and Fcc = 50%).

The diffraction pattern is remarkably sensitive to even small
degrees of stacking disorder. This is illustrated in Fig. 11 where
droplets containing silver iodide froze around 257 K and the
peaks associated with hexagonal character are clearly present.
However, the pattern is clearly inconsistent with well-defined
hexagonal ice and instead we find, Fhc = 1% and Fcc = 10%.
Note that the fitted diffraction pattern from ice annealed at just
below 0 1C has a Fhc and Fcc = 0% as expected for ice Ih. This
indicates that we can detect stacking fault probabilities on the
order of only 1% in ice Ih.

Kuhs et al.9 concluded that the ice they made via decom-
position from gas hydrates and vapour deposition contained
2nd order memory effects (s = 4). Hence, it is prudent to analyse

Table 2 Notation conversion

Old 1st order
notation Malkin et al.30 New 1st order notation 2nd order notation Kuhs et al.9 2nd - 1st order notation

Fcc Fccc Fccc = 100 � d
Fcc ¼ 100� Fccc

Fccc þ 100� Fhccð Þ

� �
Fhcc Fhcc = 100 � b

Fc Fhc Fchc Fchc = 100 � g
Fhc ¼ 100� Fhhc

Fhhc þ 100� Fchcð Þ

� �
Fhhc Fhhc = 100 � a

Fh Fch = 100 � Fcc Fcch = 100 � Fccc
Fhch = 100 � Fhcc

Fhh = 100 � Fhc Fchh = 100 � Fchc

Fhhh = 100 � Fhhc

Fig. 9 A ‘‘stackogram’’ containing an array of calculated diffraction patterns
(d-spacing = 3.40–3.85 Å) for various values of Fhc and Fcc. The pattern is
for the values of Fhc and Fcc at the centre of each box. The red diagonal line
is where Fhc and Fcc are equivalent, which represents the random stacking
line. Deviations from this line represent stacking with 1st order memory. The
nature of ice at each of the corners of the diagram is indicated.
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the new data with a DIFFaX model capable of resolving second
order memory interactions. In order to resolve 2nd order
memory effects (s = 4), a model with four independent stacking
probabilities (Fccc, Fhcc, Fchc and Fhhc) is required in DIFFaX.
The relationships between these stacking probabilities and
the parameters defined by Hansen and co-workers,9,12 are given
in Table 2.

In the model employed by Hansen et al.12,13 and Kuhs et al.9

the best fit to their diffraction data was found using a least-
square minimisation approach. To obtain the best possible fit
to our diffraction data we have written a new computer pro-
gramme (MCDIFFaX) which embeds DIFFaX in a least-square
environment and uses a Monte Carlo algorithm to search for
the best values of the various stacking probabilities, lattice
constants, peak profile parameters and zero shift.126 Our fitting
strategy is to start off with Fc = 0.5 and no memory effects. Once
the w2 has converged, first and second order memory effects are
introduced successively as the programme runs to see if this is
required to improve the quality of the fit to the data.

In addition to the least-square approach we have used a grid
sampling approach where the four stacking probabilities in
the 2nd order memory model were systematically varied inde-
pendently across their entire ranges from 0 to 100%. This test
allowed us to verify the approximate location of the global
minimum. This was initially done in large steps, for example
10%. Once a rough indication of the best values was obtained, a
higher resolution run (e.g. steps of 1%) was performed over a
smaller range of numbers to improve the accuracy of the result.
The resultant structure file is compared to the observed structural
results and scored using a delayed cross correlation function. The
cross correlation function allows the identification of all possible
stacking ratio fits. The maximum value of the cross correlation
is used as a score of how similar the results are, where score =
1 � maximum correlation. This produces a 4D array of scores
between 0 and 1. The dimensions of the array are determined
by the number of steps in (Fccc, Fhcc, Fchc and Fhhc). The first
minimum found in this 4D array is the lowest score present.
An algorithm was developed to locate all of the minima. The
current minimum value is initially set to the lowest minimum
score and the cell (set of parameters, Fccc, Fhcc, Fchc and Fhhc)
where the lowest minimum score occurs is marked as having
been visited. All not yet visited cells are then searched to see if
they contain a score between the current minimum value and a
small positive increment to it. Any cells found that are within

Fig. 10 Chi-squared (w2) maps of DIFFaX fits to the experimental data as a
function of Fhc and Fcc using a 1st order memory model, for droplets
containing: (A) kaolinite 0.05 wt% and (B) microcline 0.8 wt. Both plots
show a clear and unique minimum in w2.

Fig. 11 Comparison of the experimental X-ray diffraction patterns of
frozen water droplets containing silver iodide and a DIFFaX prediction
for stacking probabilities of Fhc = 1 or 2%, Fcc = 10% and ice Ih. Inset is a
characteristic ice Ih peak at B33.51 which is sensitive to the stacking ratio.
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two neighbouring cells in any direction of an already visited cell are
assumed to belong to that minimum peak. If a cell is found that is
further away and not touching any neighbouring cells is considered to
be another (second) minimum peak and is recorded and marked as
visited. The current minimum value is then incremented by the small
positive increment and the process repeated until the current mini-
mum value exceeds 1. Fitting all the diffraction patterns using this
technique showed that there was a single minimum in the parameter
space and confirmed the result of the least squared routine.

The 2nd order memory MCDIFFaX fits to the diffraction
patterns are shown in Fig. 8. We also fitted a 1st order memory
model to the same data and the resulting stacking probabilities
are shown together with those for the 2nd order memory model
in Table 3. The correlations between the various stacking prob-
abilities in Table 3 are illustrated in Fig. 12. In the case where 2nd
order memory effects were not deemed important there should
be no dependence on the structure of the sequence two stacking
events away, i.e. Fhcc = Fccc and Fchc = Fhhc. Hence, it is clear
from Fig. 12A that there is no substantial 2nd order memory
effect. The only pattern in which there may be a minor 2nd order
memory effect is for droplets containing microcline which froze
around 259 K and for which we found Fhcc = 20% and Fccc = 24%.
The DIFFaX fit to the experimental homogeneous nucleation
diffraction pattern in ref. 30 showed no indication of 1st order
memory effect, this has been corroborated by re-analyzing the
data with MCDIFFaX. In contrast, Kuhs et al.9 and Hansen et al.12

found strong differences between their equivalent parameters
indicating complex stacking patterns in ice made in a variety
of different ways. Given, that Kuhs et al.9 and Hansen et al.12

show strong 2nd order memory effects in the ices recrystallized
from high pressure phases, the possibility of even higher order
memory effects should not be discounted.

Since there is no significant 2nd order memory in ice
nucleated homogeneously or heterogeneously from pure water

the first order variables Fhc and Fcc are therefore adequate to
describe this ice. This is demonstrated in Fig. 12B, where the
Fhc and Fcc from the 1st order memory fitting procedure and
the same values derived from the 2nd order memory model are
compared (the stacking probabilities from the 2nd order mem-
ory model are converted to 1st order equivalents using the
relationships set out in Table 2). Hence, the remaining discus-
sion of stacking in ice from water droplets is based around the
1st order memory model, and the Fhc and Fcc parameters.

At median freezing temperatures below B237 K, the ice is fully
stacking-disordered (Fhc and Fcc E 50%) and indistinguishable
from ice resulting from homogeneous nucleation in 0.9 mm sized
droplets (see Fig. 7 and 8). Fig. 13 shows that as the freezing
temperature increases, Fhc and Fcc decrease and the proportion
of cubic sequences decreases. One striking result from this
study is that there is still detectable stacking disorder even at
the highest studied median freezing temperature of 257 K. In
this instance Fhc = 1% and Fcc = 10%. This corresponds to
approximately one cubic sequence (or stacking fault) in 100
layers of what is dominantly ice Ih.

At freezing temperatures above 249 K, the stacking prob-
abilities Fhc and Fcc are no longer equivalent, indicating that
the stacking disorder is no longer random (s = 3). This is illustrated
in the stackogram in Fig. 14 where the points corresponding to
freezing temperatures higher than 249 K fall above the random
stacking line. This suggests that domains of hexagonal ice form
with higher freezing temperatures, together with smaller domains
of stacking disordered ice. The monotonic decrease in the
fraction of cubic sequences with increasing freezing temperature
is consistent with the hypothesis that the initial ice to crystallize
is ice Isd which anneals to stable ice Ih if the experimental
conditions allow. Hence, the structure of the resulting ice is a
function of the temperature at which nucleation occurred, and
the time available for re-crystallization, rather than the mode or

Table 3 The average stacking ratio and corresponding goodness of fit (w2) or score for each set of at least four heterogeneous nucleation experiments
with a cooling rate of 30 K min�1 and a dvm of B17 mm. Tonset is the temperature ice was first identified and Tf is the median freezing temperature

Symbol
(Fig. 6) Materiala

Tonset �
1.0/K

Tf �
1.0/K

1st order model 2nd order model
Cubicityd

(%)Fhc (%) Fcc (%) wred
2 b Fccc (%) Fhcc (%) Fchc (%) Fhhc (%) Scorec Fhc (%) Fcc (%)

Corundum 0.1 wt% 237.0 235.3 52 52 1.05 52 52 52 52 0.02 52 52 52
Montmorillonite 0.1 wt% 238.0 235.8 52 52 1.09 51 53 52 52 0.04 52 52 52
Kaolinite 0.05 wt% 239.0 236.2 50 50 1.07 51 50 52 51 0.03 52 50 51
Kaolinite 0.1 wt% 241.0 236.9 50 50 1.08 51 50 48 51 0.04 50 50 50
Illite 0.1 wt% 245.0 238.7 45 45 1.07 43 47 44 47 0.03 45 45 45
Kaolinite 1.0 wt% 244.0 239.9 40 40 1.04 39 41 39 43 0.02 41 40 41
Quartz 1.0 wt% 244.0 244.7 40 40 1.06 39 41 39 43 0.02 41 40 41
Microcline 0.8 wt% 252.0 249.0 30 35 1.07 35 36 29 31 0.03 30 35 32
Albite 0.2 wt% 256.0 250.0 20 30 1.08 30 31 21 19 0.04 21 30 23
Microcline 1.0 wt% 259.0 253.0 10 22 1.09 24 20 10 11 0.04 10 21 11

’ Silver Iodide 0.05 wt% 263.0 257.2 1 10 1.04 10 10 1 1 0.02 1 10 1
Annealed ice Ih 0 0 1.03 0 0 0 0 0.01 0 0 0

a Kaolinite (KGa-1b) and montmorillonite (STx-1) (Clay Mineral Society, West Lafayette, USA); NX-illite (B+M Nottenkamper, Munich, Germany);
quartz, microcline and albite (Ward’s Natural Science Establishment Inc., New York, USA); silver iodide (499.99%) and corundum (499.9%) from
Sigma-Aldrich. b The reduced chi-squared (wred

2) is defined as the sum of the squared difference between model and experimental pattern at each
point in 2y divided by the number of degrees of freedom. c Score using a delayed cross correlation function: score = 1 � maximum correlation
(http://paulbourke.net/miscellaneous/correlate). Notation conversion and calculating Fhc and Fcc from MCDIFFaX model ratio can be found in

Table 2. d Cubicity is calculated by:
Fhc

Fhc þ Fch
.
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nature of the nucleation event. Slower cooling rates had a similar
effect to warmer freezing temperatures, with slower cooling rates
leading to fewer cubic sequences. The lack of dependence of

stacking-disorder on nucleation mechanism suggests that whenever
ice grows from supercooled water in nature or technological appli-
cations it initially grows as ice Isd with randomly arranged 50%
hexagonal and 50% cubic stacking sequences. Though, in many
situations latent heat release may rapidly elevate the temperature to
a regime in which stacking-disorder will anneal. These results offer
detailed insights into the crystallization process of water, a process
important in many fields,127 and suggest that stacking-disorder
plays an important transient role in the crystallization of ice
from water in general.

Stacking disorder in ice I made via
routes other than from liquid water

The equivalent 1st order memory stacking probabilities Fhc and
Fcc for ice I made via the recrystallization of ice V and IX,12,13

the decomposition of CO2 hydrates9 and via vapour deposition9

are illustrated in Fig. 14. As discussed above, both Kuhs et al.9

and Hansen et al.12,13 report 2nd order memory effects, informa-
tion which is not possible to plot on a 2D plot, hence the stacking
probabilities reported by those authors have been converted to Fhc

and Fcc. The details of the translation the parameters given by
Hansen and co-workers to Fhc and Fcc can be found in Table 2.
Additionally, we plot the stacking probabilities for ice from liquid
water and new data for ice recrystallized from ice II.

It is striking that all of the data in the stackogram (Fig. 14) is
above of, or on, the random line (i.e. where Fhc r Fcc). This is
perhaps consistent with the fact that stacking disorder in ice

Fig. 12 Correlation plots between stacking probabilities for ice resulting
from heterogeneous nucleation in water droplets. (A) Shows that there are
negligible second order memory effects. (B) Shows that the 2nd order
model produces the same Fhc and Fcc as the 1st order model. The blue
dashed line is the 1 : 1 line.

Fig. 13 Cubicity, Fcc and Fhc as a function of Tf for droplets containing a range
of heterogeneous ice nucleants; the diffraction patterns and MCDIFFaX fits are
shown in Fig. 8. The fit through the cubicity data is for illustrative purposes only.

Fig. 14 A stackogram illustrating the stacking probabilities (Fhc and Fcc)
of ice I resulting from heterogeneous nucleation in water droplets from
this study as well as those from: Malkin et al.30 for homogeneous nuclea-
tion in water; Kuhs et al.9 who report stacking probabilities in ice I made
from CO2 hydrates and vapour deposition onto a cold substrate; and
Hansen et al.12,13 who made ice Isd from ice V and IX. Fhc and Fcc would
both equal 100 for hypothetical perfect cubic ice Ic.
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is a result of kinetic limitations in the growth of ice I and the
stacking sequences never tend towards more ordered sequences
which would be to the right (Fhc 4 Fcc) of the random line. In
general, ice which forms at higher temperatures tends to contain
larger domains of hexagonal sequences. It is also evident that ice
made in different ways seems to occupy different parts of the
stackogram. Ice from liquid water is either at the random line for
ice which nucleates at the lowest temperatures or just above the
random line for ice which nucleated at warmer temperatures
where domains of hexagonal sequences form. Whereas, ice
formed from re-crystallisation of high pressure phases and
gas hydrates has Fcc greater than 50%. More work is required
to understand what causes the variation in ice Isd generated
through different pathways.

The results in Fig. 14 for ice I recrystallized from ice II were
performed for this study. The ice II sample was prepared by
freezing 1 mL of H2O in an indium gasket inside a Specac press
die precooled to 77 K, followed by heating of the sample to
233 K at 0.4 GPa. The sample was then rapidly quenched to 77 K,
recovered under liquid nitrogen and transferred onto an XRD
sample holder under liquid nitrogen. This was subsequently
mounted on a cold stage at 98 K of our X-ray diffractometer as
described above. Quantitative Rietveld refinement showed that
the ice II sample was contaminated with only 2–5% ice V. We
then followed the recrystallisation of the ice II as the samples
were warmed at rates of between 0.1 to 30 K min�1 in separate

experiments. The samples were heated from 98–148 K (in 5 K
increments) and then to 168 (in 2 K increments) at the defined
rate. In order to record diffraction patterns of the ice at each
increment without further transformation of the ice during the
period of the measurement, the samples were cooled back to
110 K at each increment. Recrystallization to ice Isd was observed
between 150 and 165 K. A selection of the resulting diffraction
patterns for ice Isd, immediately after recrystallization, are shown
in Fig. 15 together with the MCDIFFaX fits. The resulting Fhc and
Fcc values are listed in Fig. 14 and Table 4. This ice falls well
above the random line in a similar region to ice recrystallized
from ice V and IX. Intriguingly, ice Isd from ice II is the closest to
well-defined cubic ice of all the ices summarised in Fig. 14.

It is apparent from Table 4 and Fig. 14 that the stacking ratio of
ice Isd recrystallized from ice II is dependent on the heating rate.
There is a monotonic decrease in the fraction of cubic sequences
with increasing heating rates, suggesting that increasing the
rate of heating promotes the recrystallization of ice II to ice Ih or
the transformation of cubic sequences to hexagonal sequences.
Thus, cubic stacking seems to be favoured kinetically.

The resulting stacking ratios from the 2nd order memory
model, in Table 4, identify that there is a 2nd order memory
effect since Fhhc a Fchc and Fhcc a Fccc. The probability of
appearance of a particular type of stacking sequence is affected
by the next-nearest stacking sequences. The 2nd order memory
grid sampling programme also identified multiple minima.
However, upon further investigation and comparison of the
numerically calculated fits with the experimental data the lowest
scoring minima was the only reasonable fit; the best fits can be
seen in Fig. 15. The ice II to ice I transition is endothermic and
therefore there is no associated release of latent heat.128 This is
perhaps why the sample forms ice which is furthest of any from
the stable hexagonal structure and closest to perfect ice Ic.

Symmetry of ice Isd

The six-fold rotational symmetry in crystals of ice Ih is related to
the six-fold screw axis in its crystal structure. Introduction
of cubic sequences into a hexagonal structure disrupts the
six-fold screw axis, but does not affect the three-fold rotational
symmetry on the same axis. Hansen et al.13 recognised this and
identified the space group P3m1 for ice I containing stacking
disorder. This space group is in the trigonal crystal system,
a subgroup of the hexagonal crystal family. This was also

Fig. 15 X-ray diffraction patterns of ice Isd recrystallized from ice II (solid
lines) together with MCDIFFaX fits including 2nd order memory effects
(dashed lines).

Table 4 The average stacking ratio and corresponding score for ice Isd recrystallized from ice II at different heating rates

Heating rate K min�1

2nd order model

Cubicitya (%)Fccc (%) Fhcc (%) Fchc (%) Fhhc (%) w2 Fhc (%) Fcc (%)

0.1 84.5 59.2 49.8 66.1 0.07 56.8 67.4 73.3
0.5 83.6 57.2 48.1 64.0 0.13 55.2 66.2 71.4
1 83.1 49.7 45.8 57.9 0.16 47.8 62.3 67.0
10 81.0 49.8 41.3 57.9 0.06 47.7 61.7 63.3
30 77.6 47.6 40.6 57.9 0.12 45.7 59.7 58.8

a Cubicity is calculated as in Table 2.
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recognised in the past by Hallet et al.129 who also showed
numerous images of atmospheric ice crystals with three-fold
rotational symmetry. A review of atmospheric trigonal ice
crystals reveals that trigonal ice crystals occur over a wide range
of atmospheric conditions and have been observed in clouds all
around the globe both in the troposphere and stratosphere.130

Conclusion

The emerging picture of ice I is of a highly variable and much
more complex material than was typically thought in the past.
All diffraction patterns for what was identified as cubic ice in
the past contain features consistent with a substantial degree of
stacking disorder and there exists no pattern indicative of well-
defined cubic ice (to the best of our knowledge). We argue that
the name stacking disordered ice, ice Isd, is the most appro-
priate name for this material. This name has now been used in
the literature for several years,4,30,58,62,123,124,131–134 and we
recommend it is used in place of the term cubic ice where
the ice is stacking disordered. The term cubic ice should be
reserved for well-defined ice I with cubic space group Fd%3m.

One striking feature of ice Isd is the fact that it is highly
variable with the memory within the structure of ice Isd being
strongly dependent on the route through which the ice was
formed. Ice which forms homogeneously from pure water is
fully stacking disordered, whereas ice recrystallized from high
pressure crystal phases, for example, has a more complex
structure in which there are correlations between nearest and
next-nearest layers. The varying degrees and nature of stacking
disorder raises important questions about the validity and
applicability of the physical data for metastable ice I. Much of
this data was collected without a record of the nature of the
stacking disorder. Revisiting data such as the latent heat of
transformation of ice Isd to ice Ih with well characterised ice Isd

may resolve the substantial discrepancies in the reported values
(23 to 160 J mol�1).8,18,20,21,25,109,135–137 It is possible that the
broad range of enthalpies of transformation reported in these
studies are in part related to the variability in stacking disorder
in ice Isd,11 although it may also reflect variability in other
structural defects. In addition, it was very recently found that
there are signatures in the Raman spectrum of stacking disorder
and that the spectral features depend on the nature of the
stacking disorder in ice.134 As a community, we should also
consider revisiting measurements of thermodynamic quantities,
(e.g. heat capacity and vapour pressure) as well as interfacial
energies, optical constants and spectroscopic properties using
well-characterized ice in order to understand the relationship
between stacking disorder and the physical properties of ice Isd.

The new results presented in this work reveal that stacking
disorder can be important in ice crystallized at much higher
temperatures than previously thought. We showed that resulting
ice heterogeneously nucleated at 257 K contains measurable
stacking disorder. At these warm temperatures stacking disorder
is likely to be transient, but nevertheless it appears to be an
intermediate in the crystallisation of water to ice under

conditions pertinent to much of the Earth’s atmosphere. At
below B200 K, which is relevant for stratospheric clouds,
equatorial cirrus clouds and mesospheric clouds, stacking
disorder will likely persist for extended periods of time and
these clouds may even be made of ice Isd.6,8,138 This is consistent
with the appearance of ice crystals in very cold cirrus with three-
fold symmetry,139 since ice Isd has a trigonal space group.
Intriguingly, ice crystals with three-fold symmetry are also
observed in much warmer clouds (see Murray et al.130).

Given what we have learnt about stacking disorder in ice,
does well-defined cubic ice exist? We are not aware of any
diffraction evidence for well-defined cubic ice. However, there
are scattered reports which suggest that well-defined cubic ice
may exist. A rare halo at 281 to the sun, called Scheiner’s Halo,
has been observed and is consistent with octahedral crystals of
cubic ice.140,141 Others have suggested that angles between
crystallites in snow crystals are consistent with growth off the faces
of an initial crystal of cubic ice with an octahedral shape.142 Crystals
sampled in the polar stratosphere sometimes have what appears to
be 4-fold rotational symmetry consistent with crystals of cubic ice
with a cubic habit,143 and crystals grown from vapour deposition
around 200 K in the laboratory have been observed with an
apparent cubic morphology.144 Whilst we cannot rule out the
existence or possibility of creating true cubic ice, there is an
increasing realisation that there is strong propensity for ice I to
grow with stacking disorder.
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