Open Access Article. Published on 17 June 2015. Downloaded on 5/16/2024 7:59:21 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

ChemComm

CrossMark
&click for updates

' ROYAL SOCIETY
OF CHEMISTRY

Amphiphilic graphene oxide stabilisation of

hexagonal BN and MoS; sheetsf

Cite this: Chem. Commun., 2015,
51, 11709

Received 11th March 2015,
Accepted 17th June 2015

DOI: 10.1039/c5cc02066b

www.rsc.org/chemcomm

A simple and scalable method has been developed for directly forming
water-dispersible van der Waals solids involving mixing aqueous
solution of graphene oxide (GO) with hexagonal boron nitride (BN) or
molybdenum disulphide (MoS,) in N-methylpyrrolidone. The GO acts as
an amphiphile in stabilising the colloidal solutions of the heterolaminar
material in water.

The breakthrough in unveiling the exceptional properties of
graphene has triggered extensive research efforts in two-dimensional
(2D) materials, including inorganic layered analogues such as
hexagonal boron nitride (BN), and molybdenum disulfide (MoS,),
and other transition metal dichalcogenides, and layered oxides.
In addition to investigating the behaviour of monolayers, there is
a rapidly emerging focus on constructing or reassembling isolated
layers of such material into designer multi-layer heterostructures
that are bound together primarily by van der Waals forces.” Such
cohesion forces essentially preserve the distinct electronic properties
of individual layers of the material,® enabling tunable properties
of the heterostructures, with potential for functioning as high
performance electronic switches and optoelectronic devices that
are still challenging to access for graphene due to the absence of
an intrinsic energy bandgap.*

Advancing the practical applications of the above heterolaminar
van der Waals materials requires the development of scalable
syntheses. In comparison to the well-developed strategies for
fabricating graphene and quasi-graphene forms (graphene
oxide or reduced graphene oxide), the possibility of making multi-
layer van der Waals solids has only recently been achieved
experimentally.>® Significant efforts have been made towards
growing graphene, monolayer BN and MoS, epitaxially on top of
each other with controllable quality, although finding the right
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conditions for growing continuous layers is challenging.””®
Another approach is layer-by-layer deposition from 2D material
suspensions via Langmuir-Blodgett techniques.'”' It is also
possible to mix preformed colloidal suspensions of different 2D
materials to generate layered flocculates." This solution-based
self-organising method is versatile and scalable, showing promise
for producing van der Waals solids as ultrathin dielectrics,"
selectively permeable membranes,'® and composite materials."*
However, there are some limitations on the present approaches
which involve the use of specific organic solvents that have
similar surface tension to that of the stabilised 2D materials.">®
Organic solvents can only ensure temporary stability and finite
concentration of the 2D material suspensions,'” and thus can
restrict further processing of such materials. It is also difficult to
produce stabilised inorganic lamellar materials, including BN
and MoS,, in aqueous media in the absence of additional
surfactants due to their hydrophobic property.’®*® Indeed access
to water-processable quasi-graphene forms such as graphene oxide
and reduced graphene oxide has dramatically advanced the potential
of graphene-based materials into much broader areas.”**' Hence,
there is significant scope for developing novel and versatile solution-
based protocols to prepare water-dispersible heterolaminar
van der Waals materials.

In this work we develop the use of graphene oxide (GO) sheets
as both the composite material and the surfactant for supporting
and stabilising BN and MoS, sheets in water. GO is amphiphilic
due to the presence of carboxyl and hydroxyl groups at the edges
and hydrophobic unoxidized polyaromatic islands within the basal
plane.”*?* This amphiphilic property has been used for effectively
stabilising pristine graphite flakes and carbon nanotubes,* creating
highly stable Pickering emulsions,>*** and constructing three-
dimensional networks of GO hollow spheres.”® This suggests
that GO is capable of non-covalently assembling with BN or
MoS, sheets via van der Waals interactions and/or hydrophobic
effects, at the same time stabilising the heterolaminar materials
in water, and this is the focus of the work reported herein.

The overall procedure for preparing the heterolaminar
materials is summarised in Fig. 1. GO was prepared from high
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Fig. 1 Schematic illustration of the sample preparation and corresponding
photographs of the resulting dispersions.

After re-dispersing

Re-dispersing in water

purity graphite flakes powder (99.9%, SP-1, Bay Carbon) using the
modified Hummer’s method.1***” Colloidal dispersions (10 mL) of
BN (1 mg mL™") and MoS, (1 mg mL™") in N-methylpyrrolidone
(NMP) were prepared using probe sonication for 1 hour. Each
dispersion was then diluted to 0.2 mg mL™"' (0.5 mL) and
directly added drop-wise into 0.5 mL of colloidal suspension
of GO (0.5 mg mL "), followed by mild sonication for 30 seconds.
The stability of the suspensions were investigated under acidic
(pH 1), neutral and basic (pH 12) conditions. We selected a relatively
low starting concentration for BN and MoS, dispersions, because
higher concentrations were observed to induce instability of the
mixed solutions, presumably due to an increase in irreversible
loading of BN or MoS, sheets onto GO sheets. The resulting mixed
dispersions were centrifuged (860 x g, 15 min) to remove any large
flakes of the starting laminar materials, with the supernatants
then separated, affording the colloidal dispersions of GO-BN
and GO-MoS,. Centrifugation of samples prepared under acidic
condition showed complete precipitation, and thus loss of
stability of the material (ESI-S1f). NMP was the dispersing
medium of choice for the exfoliation and stabilization due to
the insolubility of BN and MoS, in water, but not in NMP, as well
as the infinite miscibility of NMP with water. Despite the ability to
directly exfoliate BN and MoS, in the presence of GO, pre-sonication
of BN and MoS, in NMP effectively avoids any risk of damaging the
structure of GO. The NMP in the resulting solutions can be further
removed by centrifugal-washing the samples at 18370 x g for
1 hour, and redispersing the sediments into water, affording stable
dispersions, Fig. 1. The colour difference between the solutions
after mixing and after re-dispersing arises from the higher stability
of the GO devoid of BN or MoS,, whereas the heterolaminar
materials are more readily separated centrifugally.

Control experiments involving mixing NMP solutions of BN
and MoS, with water showed no evidence for forming stable
dispersions, clearly establishing that the formation of any
dispersions in water requires the presence of GO. This supports
our hypothesis that GO acts as an amphiphilic surfactant, in
binding to BN and MoS, through the hydrophobic islands in
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lowering their interfacial energy, with hydrophilic groups on the
outer surface of the GO stabilising the colloidal dispersion of the
heterolaminar material in water. Pertaining to the effect of pH,
under acidic conditions there is a loss in stability of the GO (ESI-S1t)
whereas stable dispersions formed under neutral and basic (pH 12)
conditions. The electrostatic stability of the re-dispersed solutions
of GO-BN and GO-MoS, at neutral pH was confirmed by zeta
potentials, at —48.3 mV, —47.7 mV and —50.3 mV, respectively, for
GO solution, and re-dispersed solutions of GO-BN and GO-MoS,.
Transmission electron microscopy (TEM) was used to investigate
the state of the re-dispersed composite materials in water, by
dropping dispersions onto a holey carbon coated copper grid
and drying under ambient conditions. TEM images for pristine
GO, exfoliated BN and MoS, are shown in Fig. 2a-d, respectively.
Graphene oxide sheets (~200 nm to 10 pm in lateral dimen-
sions) are evident in Fig. 2a and 3a, with the corresponding
electron diffraction (inset) revealing a typical pattern for mono-
layers. The pattern rings of electron diffraction in the inset of
Fig. 2b are consistent with randomly stacked layers of GO.>®* TEM
images and corresponding electron diffraction patterns from
selected areas in Fig. 2c and d, for as prepared separate NMP
solutions of BN and MoS,, confirm the presence of exfoliated BN
and MoS, sheets. The exfoliated sheets range in size from
~200 nm to 1 um for both materials. While BN gives a similar
shape and size due to the smaller cross section of the starting
material (~1 um), MoS, (~2 pm) shows an apparent fragmenta-
tion, presumably arising from high energy cavitation processes
associated with the sonication and less strong in-plane stiffness
compared with BN sheets.?® Fig. 2e and g show the composites
of GO-BN and GO-MoS, in the re-dispersed solutions, respec-
tively, with the size of the BN and MoS, consistent with that of
the as-exfoliated sheets in NMP. Similar images were obtained
for samples prepared under basic conditions (ESI-S21). The
electron diffraction pattern in Fig. 2f is similar to that of the
stacking monolayers in Fig. 2b. Even though it is difficult to
determine the overlapping diffraction spots of BN in this pattern,
as BN and graphene have very similar crystal structures with a
lattice constant difference of ~2%, the difference in contrast, size
and shape of BN and GO sheets provides a means to recognise BN.
In the case of GO-MoS,, the electron diffraction (Fig. 2h) shows a
typical pattern for MoS,, along with the GO ring pattern. The TEM
analysis also shows that BN and MoS, always accompany GO,
which is in accordance with the BN and MoS, sheets being
supported on the surface of GO in the re-dispersed solutions.
Atomic force microscopy (AFM) was undertaken to further
investigate the morphology of the heterolaminar materials. The
pristine GO is monolayered having a measured thickness of
~1 nm,”" Fig. 3a and b. The structures of heterolaminar
materials are consistent with TEM analysis, with BN and MoS,
supported on GO evident in Fig. 3c, e and f. The height profile
measurement in Fig. 3d along the orange line in Fig. 3c reveals a
thickness of ~5 nm for BN. The height profiles for the GO-MoS,
show that the sheets of MoS, are ~8-12 nm thick, Fig. 3g. The
difference in thickness is related to the different interplanar
distances between BN (~0.33 nm) and MoS, (~0.61 nm), as well
as the higher surface energy of MoS, (>250 mJ m ?) compared
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Fig. 2 TEMimages of (a, b) GO, (c) exfoliated BN and (d) MoS; sheets, (e, f)
GO-BN and (g, h) GO-MoS;. Electron diffraction patterns for all samples
are as shown in the inset.

to that of BN (~110 mJ m™?),>***! requiring higher energy input
for exfoliation.

Raman spectra were recorded for pristine GO, BN and MoS,,
and for the re-dispersed heterolaminar materials respectively
(Fig. 4). Typical spectra for GO displayed a D and G band at
~1370 cm™ ' and ~1570 cm ™" respectively (Fig. 4a).>> For BN
(Fig. 4b) and MoS, (Fig. 4c), strong fluorescence background
was observed, possibly due to the remaining NMP which was
used as the dispersant. BN exhibits a characteristic peak at
~1360 cm ™' that is due to the E,; phonon mode which is
similar to the G peak in graphitic materials, as shown in the
zoomed-in image in Fig. 4(i).*>* MoS, has characteristic peaks at
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Fig. 4 Raman spectra of pristine (a) GO, (b) BN, (c) MoS, and composite
material of (d) GO-BN and (e) GO-MoS,, respectively. Zoomed-in images
of the peaks labelled as (i), (i) and (i) are shown on the right.

~380 cm ™' and ~400 cm ™' which are attributed to the E;, and
A, modes, respectively, Fig. 4(ii).** Strong D and G bands for
GO are evident for both GO-BN and GO-MoS,. The characteristic
peak for BN cannot be seen due to overlap with the strong
D band for GO, whereas for MoS,, both characteristic peaks are
discernible, Fig. 4(iii).
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In conclusion, we have developed a facile method for preparing
heterolaminar van der Waals composites based on graphene oxide
and BN or MoS, in water. This involves a simple sonication of BN
and MoS, in NMP as a dispersing medium, for then adding to
preformed GO in water, with the subsequent processing leading
to aqueous solutions devoid of organic solvent. Importantly the
method can be readily scaled into gram quantities of the material.
Moreover, this work extends the utility of GO in stabilising 2D
layered materials in water and consequently it opens up new
facile processing adventures for 2D layered materials in general,
particularly in water.
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Notes and references

+ Methods summary: GO used in this study was prepared from natural
graphite flakes powder (99.9%, SP-1, Bay Carbon) using the modified
Hummer’s method.**”” Probe sonication was carried out using a Vibra-Cell™
VCX130 sonicator at 60% amplitude for all samples. Centrifugations were
performed using the Dynamica Velocity 14R. Zeta potential analysis was
performed using a Malvern Zetasizer Nano series. Measurements for each
sample were recorded in triplicate and 20 data acquisitions were recorded in
each measurement. All measurements were recorded at 25 °C in Malvern
disposable clear Folded Capillary Cells. TEM samples were prepared by
depositing a drop of the suspension onto a holey carbon coated copper grid
(#2450-AB, SPI Supplies) and dried under ambient conditions. TEM analysis
was carried out using a Philips CM200 instrument operating at 120-200 kV.
Image J software was used for processing all the TEM images. Raman spectra
were acquired using a Witec alpha300R Raman microscope with excitation
laser wavelength of 532 nm (<5 mW), at room temperature. The spectra were
recorded with an x40 objective (Numerical Aperture 0.60) for each sample
with typical integrations times between 10 to 20 seconds with 3 accumula-
tions per spectrum. Atomic force microscopy (AFM) analysis in tapping mode
was performed with a Bruker multimode AFM and a NanoScope V under
ambient conditions. AFM probes used were Mikromasch HQ:NSC15 Si
probes with a nominal spring constant of 40 N m™ " and a nominal tip
diameter of 16 nm. The AFM scanner was calibrated in the x, y and z axes
using Si calibration grids (Bruker model numbers PG: 1 pm pitch, 110 nm
depth, and VGRP: 10 pm pitch, 180 nm depth). Samples were deposited on
mica substrates and dried in air prior to analysis.
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