The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet†

Nicholas F. Chilton, Conrad A. P. Goodwin, David P. Mills* and Richard E. P. Winpenny*

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. E-mail: richard.winpenny@manchester.ac.uk, david.mills@manchester.ac.uk

† Electronic supplementary information (ESI) available: Full synthetic details, crystallography, NMR spectroscopy, magnetism, and ab initio and magnetic relaxation methodologies. CCDC 1017031. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4cc08312a

We report the first near-linear bis(amide) 4f-block compound and show that this novel structure, if implemented with dysprosium(III), would have unprecedented single molecule magnet (SMM) properties with an energy barrier, \(U_{\text{eff}} \), for reorientation of magnetization of 1800 cm\(^{-1}\).

Since their initial discovery, single molecule magnets (SMMs) have been lauded as candidates for high density data storage devices. A major breakthrough in the field occurred in 2003 with the observation of SMM behavior in a monometallic \(\{\text{TbPCl}_2\} \) complex with an energy barrier, \(U_{\text{eff}} = 230 \text{ cm}^{-1} \). The ensuing decade saw rapid growth in lanthanide SMMs with the \(U_{\text{eff}} \) barrier to magnetization reversal increased to 652 cm\(^{-1}\) for another derivative of \(\{\text{TbPCl}_2\} \) and 585 cm\(^{-1}\) for a polynuclear Dy\(3\)\(\text{O}^+\)\(\{\text{Y}_2\text{K}_2\}\) complex. The highest blocking temperature \(T_B \) (i.e., the temperature at which hysteresis is observed) was also increased to 14 K, via an \(N_2^{3-3}\) radical bridge in a \(\{\text{Tb}_2\text{N}_2^{3-3}\}\) complex.

Although three of these milestones employ the Tb\(3\) ion, by far the most utilized lanthanide ion in SMMs is Dy\(3\) by virtue of its unique electronic structure. Apart from a radical-bridged \(\{\text{Dy}_2\text{N}_2^{3-3}\}\) complex, nearly all polynuclear Dy\(3\)-based SMMs possess negligible interactions between magnetic spin centres, and instead rely on the single ion anisotropy of Dy\(3\) because of the strongly axially repulsive crystal field potentials along the local \(z \)-direction of each Dy\(3\). Other compounds such as \(([\text{C}_6\text{H}_{15}]\text{Lu}) \) (ref. 15) or Cloke’s bis(arene) lanthanide complexes\(16\) are sometimes described as linear, but lack donor atoms directly on the axis. Linear 3d-metal compounds also show remarkable magnetic behaviour with very high \(U_{\text{eff}} \) values.\(17\) A one coordinate lanthanide complex \(\{\text{DyO}^+\}\) has been considered theoretically with a very large \(U_{\text{eff}} \) predicted,\(18\) however such an entity is not chemically feasible.

Very low coordination numbers for 4f-ions are difficult to achieve as these are large, electropositive ions, which require a sterically demanding ligand. Such a pro-ligand \(\text{HN(SiPr}_3)_2 \) was designed, and synthesised from \(\text{CISiPr}_3 \) and \(\text{LiHN(SiPr}_3)_2 \), and this was converted to the group 1 transfer agent \(\text{[KN(SiPr}_3)_2] \) with KH. Reacting two equivalents of \(\text{[KN(SiPr}_3)_2] \) with samarium(II) diiodide yields the nonmononuclear homoleptic bis(amide) complex, \(([\text{Pr}_2\text{Si}]_2\text{N—Sm—N}[\text{SiPr}_3]_2) \) (Fig. 1, see ESI† for details).

Complex 1 is the first near-linear f-element complex, with an \(N=\text{Sm—N} \) angle of 175.52(18)° in the solid state (Fig. 2, see ESI† for details); this near-linearity contrasts with the bent C–N–C angles of \(\text{[Ln}^3\text{(C(SiMe}_3)_2]_2 \) complexes (\(\text{Ln} = \text{Sm, Yb, Eu} \)).\(18-20\) The
bulky iPr groups are vital for the isolation of a homoleptic complex, as [Sm[N(SiMe3)2]2(THF)] exhibits additional O-donors.21 The Sm–N distances in 1 [2.483(6) Å] that are closer than the analogous Sm···Cmethine distances [Sm···C 3.082(7)–3.224(7) Å] that are closer than the analogous Sm···Cmethine contacts observed in [Sm[N(SiMe3)2]2(THF)] [Sm···C 3.32(1)–3.46(1) Å].21 The approximately planar SmNSi2 fragments in 1 are staggered with respect to each other (twist angle of 44.2°), with the deviation from 90° attributed to agostic Sm···Cmethine interactions.

Formally each nitrogen atom carries a single negative charge and the SmII ion is divalent, with an [Xe]4f6 configuration. The f6 configuration leads to a formally diamagnetic ⁷⁶Fe ground state, with close lying excited states that provide a non-zero magnetic moment at room temperature. Magnetic measurements on 1 give a room temperature magnetic moment of 3.62 μB that falls towards zero at low temperature (Fig. S2 and S3, ESI†). This is clearly incompatible with interesting low temperature magnetic behaviour. However, the structure of 1 is close to the ideal linear arrangement to stabilize the long angular momentum states of DyIII and produce monstrous uniaxial magnetic anisotropy.

Such a DyIII compound is challenging to make; we believe a route via the heteroleptic [Dy[N(iPr3Si)2]2] treated with the potassium salt of a large anion might work through precipitation of a potassium iodide. Other routes can be imagined, and here we present predictions of the magnetic properties of such a complex, intending to inspire synthetic work towards the linear DyIII complex, and, more ambitiously, the isoelectronic TbIII analogue.

The properties of [[Pr5Si3N–Dy–N(Si3Pr3)2]]2 2 are predicted by CASSCF/RASSI/SINGLE_ANISOS2 ab initio calculations (see ESI† for details) employing the structure of 1, where SmII has been replaced by DyIII. The validity of the method was tested by calculating the variable temperature magnetic behavior of 1, where the agreement is excellent (Fig. S2 and S3, ESI†). DyIII has a ⁶H15/2 ground multiplet, which is split by the crystal field into eight Kramer’s doublets with total angular momentum projections mJ = ±1/2, ±3/2, ..., ±15/2. The ab initio calculations show that the lowest six Kramer’s doublets are strongly mixed; a characteristic of low symmetry complexes due to the lack of a rigorous molecular C₆₅ axis.14 Along the main magnetic axis these two states can be expressed as |ψab⟩ = 64%|±1/2⟩ + 26%|±3/2⟩ and |ψcd⟩ = 68%|±1/2⟩ + 31%|±3/2⟩ (Table S2, ESI†), giving the most energetic Kramers doublet a large g value of ~17.5 perpendicular to the main magnetic axis.

Magnetic relaxation in lanthanides follows three possible routes: (1) QTM within the ground doublet (e.g. |−15/2⟩ → |+15/2⟩ in Fig. 3), (2) thermally assisted QTM (TA-QTM) via excited states (e.g. |−15/2⟩ → |−13/2⟩ → |+13/2⟩ → |+15/2⟩), or (3) an Orbach process composed of direct and/or Raman mechanisms (e.g. |−15/2⟩ → |−13/2⟩ → |+15/2⟩). The most probable pathway depends on the composition of the states involved and their interactions with phonons. For example, the slow magnetic relaxation for {Dy₄K₂} was shown to occur via the first or second excited states (TA-QTM), depending on the number and location of neighboring DyIII ions providing a source of transverse magnetic field.7 The states with opposing magnetic projections are mixed proportionally to the product of the transverse field and the transverse g-factors and therefore TA-QTM will occur via the excited state which has transverse...
g-factors above a certain threshold or where its main magnetic axis is non-collinear with that of the ground state. All non-QTM transitions are induced by the vibrational modes of the lattice (phonons) which create local oscillating magnetic fields through modulation of dipolar fields as well as an oscillating crystal field potential. To a first approximation, we can associate the probability of a phonon induced transition with the average magnetic and crystal field perturbation matrix elements (see ESI† for details).

Compared to all known DyIII complexes the calculated properties for 2 are unique with very small transverse g-factors and a common principal axis for the lowest six Kramers doublets. This suggests that both the probability of QTM within the ground doublet and TA-QTM is vanishingly small until the two most energetic doublets. Orbach relaxation is also strongly disfavoured in the low lying states as magnetic transition probabilities due to phonons are miniscule (Fig. 3). Efficient magnetic relaxation will only occur via the highest energy doublets (Fig. 3, Fig. S4 and Tables S4 and S5, ESI†). Therefore the ab initio calculation predicts $U_{\text{eff}} \approx 1800 \text{ cm}^{-1}$ for 2 – far greater than any complex to date. Whilst such calculations may over-estimate the energies, the highest energy doublets (Fig. 3, Fig. S4 and Tables S4 and S5, ESI†) are only separated by $\sim 1 \text{ cm}^{-1}$, e.g. the \bar{g}/U_{eff} ratios for $\{\text{DB}_{2}\}$ and $\{\text{Tb}_{2}\}$ are approximately 1/16, 1/15 and 1/13 cm^{-1} for the TbIII analogue 3, which is also a 4f9 ion, predict analogous behavior to the DyIII and TbII analogues of 1 and 4f8/5f1 ions suggest that f9 is ideal; even for the oblate f8 4f7/5f2 ion, the pseudo-doublets show strong energetic doublets. Orbach relaxation is also strongly disfavoured for details).

Notes and references