Issue 7, 2014

A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents

Abstract

A library of magnetic nanoparticles was generated using in situ co-precipitation of ferrous (Fe2+) and ferric (Fe3+) ions from aqueous solutions in the presence of functional block copolymers. Three different iron oxide anchoring groups, viz., phosphonic acid, carboxylic acid or glycerol were incorporated into well-defined diblock copolymers of poly(oligoethylene glycol acrylate) employed to stabilize the iron oxide nanoparticles. The [copolymer] : [Fe] ratio was varied to wield control over nanoparticle diameters within the range of 7–20 nm. The relationship between colloidal stability and nanoparticle crystallinity was investigated using dynamic light scattering, transmission electron microscopy and X-ray diffraction measurements. The amount of polymer employed during the co-precipitation proved critical in governing crystallinity and colloidal stability. We report a correlation between the polymer grafting density and the chemical structure of the anchoring group. Finally, the transverse relaxivity of the iron oxide nanoparticles in water, was investigated using a 9.4T magnetic resonance imaging scanner yielding values varying from 70 to 370 mM−1 s−1.

Graphical abstract: A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2013
Accepted
23 Jan 2014
First published
05 Feb 2014

Polym. Chem., 2014,5, 2611-2620

A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents

J. S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer and T. P. Davis, Polym. Chem., 2014, 5, 2611 DOI: 10.1039/C3PY01778H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements