Issue 11, 2014

Cyclodextrin-scaffolded amphiphilic aminoglucoside clusters: self-assembling and gene delivery capabilities

Abstract

Precise control over the architecture of gene carriers is instrumental to manipulate gene delivery efficiency. Combining cationic centers and carbohydrate motifs into monodisperse architectures has been proposed as a suitable strategy to impart nucleic acid condensation abilities while preserving biocompatibility. Herein, we have assessed the influence of the arrangement and orientation of cationic elements on the self-assembling and gene transfer capabilities of polycationic glycoamphiphilic cyclodextrins (pGaCDs). For such purposes, a series of cyclodextrin multiconjugates bearing aminoglucoside motifs at their primary rim and hexanoyl chains at the secondary positions were synthesized. In the presence of pDNA, pGaCDs self-assemble into nanoaggregates that promote cellular uptake and gene expression in COS-7 cells with efficiencies that are intimately associated with the arrangement of amino functionalities imposed by the aminoglucoside antennae onto the cyclodextrin-scaffolded cluster. Although transfection efficiencies were lower than those observed for polyethyleneimine (PEI)-based polyplexes and previously-reported polycationic amphiphilic cyclodextrins (paCDs), the results reported herein illustrate (i) the dramatic influence that subtle architectural modifications exert on the supramolecular organization of pGaCDs and (ii) the virtues of monodisperse systems for tailoring gene transfer capabilities.

Graphical abstract: Cyclodextrin-scaffolded amphiphilic aminoglucoside clusters: self-assembling and gene delivery capabilities

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2014
Accepted
31 Jul 2014
First published
05 Aug 2014

New J. Chem., 2014,38, 5215-5225

Author version available

Cyclodextrin-scaffolded amphiphilic aminoglucoside clusters: self-assembling and gene delivery capabilities

E. M. Aguilar Moncayo, N. Guilloteau, C. Bienvenu, J. L. Jiménez Blanco, C. Di Giorgio, P. Vierling, J. M. Benito, C. Ortiz Mellet and J. M. García Fernández, New J. Chem., 2014, 38, 5215 DOI: 10.1039/C4NJ00700J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements