Dalton **Transactions**

COMMUNICATION

Cite this: Dalton Trans., 2014, 43,

14514 Received 25th July 2014, Accepted 13th August 2014 DOI: 10.1039/c4dt02265c

<www.rsc.org/dalton>

The preparation and structure of Ge_3F_8 – a new mixed-valence fluoride of germanium, a convenient source of GeF_2 †

Andrew L. Hector, Andrew Jolleys, William Levason,* David Pugh and Gillian Reid

The new binary mixed-valence fluoride of germanium, Ge_3F_8 , has been obtained by heating $Gef₄$ with powdered Ge in an autoclave (390 K/4 bar/48 h). The structure contains pyramidal Ge^{II}F₃ and octahedral Ge^{IV}F₆ units, linked by fluoride bridges. The new compound is the missing member of the series $(GeF_2)_n$ ·GeF₄ (n = 2, 4, or 6). Sublimation of $(GeF_2)_n$ ·GeF₄ in vacuo provides a convenient source of GeF₂ in ca. 30% overall yield.

Although germanium is technologically very important both as the element and in oxide or chalcogenide compounds, with key applications in electronics, ceramics and optics, 1 its chemistry was neglected for many years compared with those of silicon and tin. It is now a very active area of main group chemistry and, in addition to the extensive chemistry of $Ge(w)$,² recent work has identified a large and complex coordination chemistry of $Ge(n)$;^{2,3} the latter contrasting with the limited coordination chemistry of $Si(n)²$ In Group 14 as well as the common tetrahalides MX_4 (M = Si, Ge, Sn; X = F-I),⁴ there are dihalides MX_2 (M = Ge, Sn), and the subhalides, GeBr and SnBr.⁵ Of these, the chemistry of GeF_2 has been very little explored since it is not readily available commercially and its preparation by repeatedly passing $GeF₄$ over heated germanium, is both inconvenient and time consuming, 6 while the alternative method, involving the reaction of Ge with anhydrous HF in an autoclave, is hazardous. Both routes also require special equipment.⁷ A number of intermediate halides have also been identified.² The latter are of two types; the most common are those with element–element (E–E) bonds, including $\rm Si_2F_6$, $\rm Si_2Cl_6$, $\rm Si_3Cl_8$, $\rm Si_6Cl_{14}$, $\rm Ge_2Cl_6$ and $\rm Ge_5Cl_{12}$, with structures analogous to the corresponding alkanes. Much COMMUNICATION

COMMUNICATION

COMMUNICATION

COMMUNICATION

CONSIST

COMMUNICATION

CONVENIER DEPARATION and Structure of Ge₃F₈ - a new manipum

CONVENIER SCRIPT SOME CONVENIER SOME CONVENIER SOME CONVENIER SOMETHING,

Chemistry, University of Southampton, Southampton SO17 1BJ, UK. E-mail: wxl@soton.ac.uk; Tel: +44 (0)2380 593792

rarer, and limited to Ge and Sn, are a second group of mixedvalence materials, including Sn_3F_8 , Ge_5F_{12} , and Ge_7F_{16} , which are without direct E–E bonds, but are fluoride-bridged and contain distinct environments attributable to M^H and M^{IV} centres.⁹⁻¹¹

We are currently developing new routes for electrodeposition of p-block materials from non-aqueous media, using reagents including halometallate anions as the p-block element source, 12 and have recently reported the electrochemistry of $[GeX₃]⁻ (X =$ Cl, Br or I) and $[GeCl_6]^{2-}$ in CH_2Cl_2 solution.¹³ During the course of this work we have extended our studies to the fluoride systems. We report here the preparation and characterisation of a new binary, mixed-valence fluoride of germanium and its use to provide a convenient route to GeV_2 .

Depending upon the experimental conditions, repeatedly passing GeF4 at low pressure over heated germanium yields either GeF_2 ⁶ or mixed valence Ge^{II} -Ge^{IV} fluorides.^{10,11,14} Two of the latter identified by single crystal X-ray diffraction (XRD) studies are $Ge_5F_{12}^+$ and Ge_7F_{16} , 10,11 which are members of the series $(GeF₂)_n·GeF₄·¹⁴$ These flow reactions are inconvenient and low yielding, hence we have investigated the reduction of $GeF₄$ with Ge powder in an autoclave under modest pressure (390 K/4 bar/48 h, see ESI†). Initial attempts at temperatures <370 K resulted in little reaction, but on increasing the temperature to 390 K/48 h, much of the GeF₄ was consumed (as indicated by the drop in pressure), and upon opening the autoclave in a glove-box, a mass of white microcrystalline material was found on the cooler lid. The crystals are extremely moisture sensitive, converting into a pool of liquid immediately on exposure to air. Single crystal X-ray diffraction data were collected from one of the small crystals and the structure solution identified this product as Ge_3F_8 , the missing third member of the series $(GeF_2)_n$ ·GeF₄, with $n = 2$. Unit cell measurements on several other crystals confirmed these as the same compound. Powder X-ray diffraction (PXRD) data were also collected on the bulk material and that showed smaller amounts of Ge_5F_{12} and Ge_7F_{16} , as well as traces of GeF_2 were also present. The simulated and experimental powder XRD data from this mixture are shown in the ESI.†

[†]Electronic supplementary information (ESI) available: Experimental details for the syntheses of Ge_3F_8 and GeF_2 , and the PXRD data for all the products. Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www. fiz-karlsruhe.de/request_for_deposited_data.html) on quoting CSD number 427896. See DOI: 10.1039/c4dt02265c

Dalton Transactions Communication

Sublimation of the mixture (390 K/0.5 mm) gave ∼30% yield of Ger_2 (based on elemental Ge used in the first step), which was identified by PXRD (see ESI†). Some involatile orange material (cf. ref. 6) was also formed.

Germanium difluoride has a polymeric chain structure based upon trigonal pyramidal GeF₃ units (Ge–F = 1.79(2),

1.91(2), 2.09(2) Å), with a distant fourth fluoride at 2.57(2) Å that cross-links the chains.¹⁵ The new preparation is a convenient way to obtain Ger_2 in useful quantity for further studies of its coordination and organometallic chemistry.

The single crystals of the mixed-valence Ge_3F_8 are isomorphous with Sn_3F_8 , adopting the monoclinic space group $P2_1/n$. The structure is composed (Fig. 1) of slightly distorted GeF₆ octahedra with four terminal Ge-F bonds $(1.767(1),$ 1.782(1) Å), and two slightly longer Ge–F bonds $(1.855(1)$ Å) that are involved in bridging to the Ge^H units. The germanium (II) core environment is trigonal pyramidal, composed of one terminal (Ge–F = 1.938(1) Å) and two bridging (Ge–F = 1.980 (1), 2.010(1) Å) fluorides, one linked to Ge^{IV} and one to a second Ge^{II} centre. There are also longer $Ge^{II} \cdots F$ contacts (2.56 Å), and if these are included, the germanium(π) geometry is a distorted saw-horse shape, reminiscent of GeF_2 . Overall, the packing is best considered as sheets in the (101) planes (Fig. 2a), with each sheet being made up of puckered chains of GeF₃ units along [010] connected together by the GeF₆ octahedra (Fig. 2b).

Considering the structures of $Ge_5F_{12}^{10}$ and $Ge_7F_{16}^{11}$ the same basic building blocks are present (trigonal pyramidal GeF₃ and octahedral GeF₆), but as the F/Ge ratio declines, the

Fig. 2 The Ge₃F₈ structure viewed along: (a) the b axis to observe the sheets, and (b) the a axis, showing the connectivity within the sheets.

Fig. 3 (a) View of the structure of Ge_5F_{12} .¹⁰ (b) View of the structure of $\rm{Ge_{7}F_{16}}^{11}$

structures become more distorted to maintain the germanium coordination numbers. In Ge_5F_{12} , if we ignore the distant fourth fluoride at 2.44 Å, the GeF₃ trigonal pyramids (Ge–F = 1.80(2), 1.99(2), 2.20(2) Å) form corrugated sheets in (001), based on GeF_6 octahedra linked to dimers of two corner-linked GeF₃ pyramids. As a consequence of the $4:1$ Ge^{II} : Ge^{IV} constitution, the GeF_6 units are linked to four dimers (rather than two as in Ge_3F_8) (Fig. 3a). The structure of Ge_7F_{16} is complicated in that there are seven distinct germanium sites, 11 but again, the building blocks are trigonal pyramidal GeF_3 and octahedral Ge F_6 units. The structure is best described as chains of $Ger₃$ pyramids along [001] with side chains of four $GeF₃$ units terminated by a $GeF₆$ octahedron attached to every second GeF_3 of the main chain (Fig. 3b).

In conclusion, the missing member of the unique series of mixed-valence germanium fluorides $(GeF_2)_n$ ·GeF₄ ($n = 2, 4$, or 6) has been obtained by reaction of Ger_4 and Ge powder under modest pressure and temperature, its structure determined and the structural relationships within the series established. Sublimation of the $(GeF_2)_n \cdot GeF_4$ in vacuo provides a convenient route to the previously rather inaccessible GeF_2 . Further work to explore the chemistry of GeV_2 formed by this route is underway and will be reported in due course.

Acknowledgements

We thank EPSRC for support (EP/1033394/1 and EP/1010890/1). The SCFED Project (http://www.scfed.net) is a multidisciplinary collaboration of British universities investigating the fundamental and applied aspects of supercritical fluids.

Notes and references

 \ddagger Ge₅F₁₂ was originally formulated as Ge₂F₅,¹⁴ the correct formula subsequently being established from the crystal structure determination.¹⁰

- 1 (a) D. D. Vaughn II and R. E. Schaak, Chem. Soc. Rev., 2013, 42, 2861; (b) S. Raoux, W. Welnic and D. Ielmini, Chem. Rev., 2010, 110, 240; (c) D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chem. Rev., 2010, 110, 389.
- 2 (a) J. Parr, in Comprehensive Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 3, p. 545; (b) W. Levason, G. Reid and W. Zhang, Coord. Chem. Rev., 2011, 255, 1319; (c) N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Butterworth, Oxford, 2nd edn, 1997; (d) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, Angew. Chem., Int. Ed.,

2009, 48, 5683; (e) A. C. Filippou, O. Chernov and G. Schnakenburg, Angew. Chem., Int. Ed., 2009, 48, 5687.

- 3 For lead references on $Ge(\Pi)$ complexes see: (a) A. J. Arduengo III, H. V. Rasika Dias, J. C. Calabrese and F. Davidson, Inorg. Chem., 1993, 32, 1541; (b) P. A. Rupar, V. N. Staroverov, P. J. Ragogna and K. M. Baines, J. Am. Chem. Soc., 2007, 129, 15138; (c) F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Angew. Chem., Int. Ed., 2009, 48, 5152; (d) F. Cheng, J. M. Dyke, F. Ferrante, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Dalton Trans., 2010, 39, 847; (e) F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Inorg. Chem., 2010, 49, 752; (f) J. England and K. Wieghardt, Inorg. Chem., 2013, 52, 10067; (g) P. A. Rupar, M. C. Jennings and K. M. Baines, Organometallics, 2008, 27, 5043; (h) S. M. I. Al-Rafia, M. R. Momeni, R. McDonald, M. J. Ferguson, A. Brown and E. Rivard, Angew. Chem., Int. Ed., 2013, 52, 6390. Communication

structures become more disorted to maintain the germanium

contribution interaction (see Fig. 1' be (or 14 August 2014). Although the common control to the set of the set of the set of the set of the set of
	- 4 A. K. Wolf, J. Glinnemann and M. U. Schmidt, CrystEng-Comm, 2008, 10, 1364.
	- 5 (a) A. Schnepf and R. Köppe, Z. Anorg. Allg. Chem., 2002, 628, 2914; (b) C. Schrenk, R. Köppe, I. Schellenberg, R. Pöttgen and A. Schnepf, Z. Anorg. Allg. Chem., 2009, 635, 1541.
	- 6 N. Bartlett and K. C. Yu, Can. J. Chem., 1961, 39, 80.
	- 7 E. L. Muetterties, Inorg. Chem., 1962, 1, 342.
	- 8 (a) E. Hengge, in Halogen Chemistry, ed. V. Gutmann, Academic Press, NY, 1967, vol. 2, p. 169; (b) D. Shriver and W. L. Jolly, J. Am. Chem. Soc., 1958, 80, 6692; (c) I. R. Beattie, P. J. Jones, G. Reid and M. Webster, Inorg. Chem., 1998, 37, 6032.
	- 9 M. F. A. Dove, R. King and T. J. King, J. Chem. Soc., Chem. Commun., 1973, 944.
	- 10 J. C. Taylor and P. W. Wilson, J. Am. Chem. Soc., 1973, 95, 1834.
	- 11 J. Köhler and J.-H. Chang, Z. Anorg. Allg. Chem., 1997, 623, 596.
	- 12 (a) P. N. Bartlett, D. Cook, C. H. de Groot, A. L. Hector, R. Huang, A. Jolleys, G. P. Kissling, W. Levason, S. J. Pearce and G. Reid, RSC Adv., 2013, 3, 15645; (b) P. N. Bartlett, D. A. Cook, M. W. George, A. L. Hector, J. Ke, W. Levason, G. Reid, D. C. Smith and W. Zhang, Phys. Chem. Chem. Phys., 2014, 16, 9202.
	- 13 P. N. Bartlett, C. Y. Cummings, W. Levason, D. Pugh and G. Reid, Chem. – Eur. J., 2014, 20, 5019.
	- 14 G. P. Adams, J. L. Margrave and P. W. Wilson, J. Inorg. Nucl. Chem., 1973, 33, 1301.
	- 15 (a) J. Trotter, M. Akhtar and N. Bartlett, J. Chem. Soc. A, 1966, 30; (b) G. Denes, J. Solid State Chem., 1989, 78, 52.