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Large-scale virtual high-throughput screening for
the identification of new battery electrolyte
solvents: computing infrastructure and collective
properties

Tamara Husch,a Nusret Duygu Yilmazer,a Andrea Balduccib and Martin Korth*a

A volunteer computing approach is presented for the purpose of screening a large number of molecular

structures with respect to their suitability as new battery electrolyte solvents. Collective properties like

melting, boiling and flash points are evaluated using COSMOtherm and quantitative structure–property

relationship (QSPR) based methods, while electronic structure theory methods are used for the compu-

tation of electrochemical stability window estimators. Two application examples are presented: first, the

results of a previous large-scale screening test (PCCP, 2014, 16, 7919) are re-evaluated with respect to

the mentioned collective properties. As a second application example, all reasonable nitrile solvents up

to 12 heavy atoms are generated and used to illustrate a suitable filter protocol for picking Pareto-

optimal candidates.

1. Introduction

The current battery technology cannot meet the demands
arising from the electrification of the automobiles, which is
of essential importance to meet the world’s rising energy
demand with renewable energy technologies.1 Materials science
has contributed substantially to the process of developing better,
safer and greener batteries, but especially electrolyte systems are
still far from being perfect.2–4 Computational screening can
contribute to help with this problem, but comparably little work
has been done in this area so far,5 as most theoretical studies
focus exclusively on electrode materials.6,7 Standard electrolyte
formulations consist of a mixture of cyclic and linear carbonates,
most often ethylene carbonate (EC) and dimethyl carbonate
(DMC), with lithium salts like hexafluorophosphate (LiPF6) and
several additives.8 When searching for alternative materials, pro-
perties which have to be taken into account include electro-
chemical stability windows, melting, boiling and flash points,
dielectric constant, viscosity, ionic and electronic conductivity,
toxicity and price.8 Especially the correct prediction of the
electrochemical stability of the whole electrolyte systems is a
very complex problem, because of the interactions of the
electrolyte components with each other (e.g., reduced solvent
molecules can abstract hydrogen atoms from other species) and
with the electrodes – usually a passivating film, the so-called

solid-electrolyte-interphase (SEI) is formed from decomposed
electrolyte species during the first charging cycles.9 The formation
of stable SEI films is of essential importance for the battery
performance, but is hard to characterize experimentally and
cannot be predicted yet using computational models.5 Here we
do not take electrolyte reactivity into account when screening for
new materials, but instead focus on the computing infrastructure
necessary for really large-scale screenings, and on the approximate
description of important collective properties (melting, boiling
and flash points, viscosity, ion solubility etc.), as opposed to the
‘non-collective’ properties of (single-molecule/non-reactive) electro-
chemical stability, which we have investigated in more detail in a
previous screening study.10 More details on lithium ion battery
science and technology can be found in several reviews published
over the last few years, for instance, by Goodenough,9,11–13 Aur-
bach,4,14 Scrosati,2,15 Winter,16,17 and Tarascon.3 Excellent reviews
on electrolyte materials were published by Xu;8,18 SEI formation
and its properties were reviewed by Novak,19 and again by Xu.20,21

Reviews on computational studies in this field were published by
Balbuena,22 Curtiss,23 Leung24,25 and Korth.5 The most important
facts to be considered in the work presented here are the following:
to improve the LIB technology substantially, the chemical
potentials of the anode and the cathode have to be pushed
farther apart, i.e. advanced electrode materials are needed.
As soon as one goes in this direction, the electrolyte is likely
to become a bottleneck, as it has to remain functioning under
the new conditions. The development of advanced electrolyte
systems is thus also a very important field for improving
the LIB technology. Theory can contribute to this to help
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understand current systems, but also to suggest new
materials. While there is a good number of theoretical studies
of the first type, comparably little is published on the virtual
(pre-)screening of new electrolyte materials.5 One reason is
that approaches which look at single properties only are not
well suited to treat the multidimensional problem of optimiz-
ing electrolyte systems. We therefore present an approach
which goes beyond the current state-of-the-art systems by
including estimates for collective properties and grid-type
computing ressources.

2. Volunteer computing

Computational screening offers the possibility to filter a large
number of compounds for subsequent experimental work, but
the ‘chemical space’ of possibly suitable small organic mole-
cules is known to be vast.26 Sufficiently large computing
resources are thus of vital importance for systematic screening
studies. The largest part of the world’s computing power is
assumed to be distributed over almost a billion personal
computers. These provide a maximum computing capacity of
8 to 21 PetaFLOPS,27 which is in a similar range to today’s
supercomputers. ‘Volunteer computing’ (VC) strives to make
these resources available for scientific purposes. In contrast to
supercomputers, the computing power cannot be bought, but
has to be earned, which also makes it a cheaper alternative to
supercomputers. Everybody who owns an internet-connected
personal computer can donate computer time. Projects with
a larger public appeal therefore attract more volunteers. To
encourage contribution to one’s project, time has to be spent
on promoting the project and communicating with the volunteers.
To give them the opportunity to participate, the application should
be adapted to a wide range of computer types. The volunteers
remain effectively anonymous and are therefore not accountable
for projects. They have to trust the project to treat the provided
access to their computers with appropriate care. The results, which
may be wrong due to malfunctions or intentional obstruction, may
be validated by performing each job on several computers. The
appropriation of middleware increased the appeal for researchers
to set up VC projects. Therefore, the effort of the scientists as well
as the required computational knowledge is significantly reduced.
One of the most popular providers of middleware systems is the
Berkeley Open Infrastructure for Network Computing (BOINC)
project. Over the last decade the BOINC platform has established
itself as a standard tool for realizing VC projects.28 The BOINC
platform has several advantages, which allow a comparably easy
setup for VC projects – the backend server is based on standard
web-server components and BOINC provides work-scheduling,
data handling and accounting features, as well as a ‘core-client’
software which needs to be installed on the volunteer’s computer.
Scientists can thus focus on adapting their computer programs
to work within the BOINC framework and administer their project.
A project in the language of BOINC is a data unit that uses BOINC
for distributing its jobs. Each project is independent, has its own
web site and incorporates applications. An application includes

the intended programs as well as a set of workunits and results.
A workunit is one computation that is going to be performed, also
known as a job. Each result is associated with a workunit and it
describes the instance of a computation. Each application can be
compiled for different platforms. The application program can in
principle be written in any language, but one has to keep the
details in mind. One may circumvent altering the source code by
using the provided BOINC wrapper. To adapt the program directly,
only some minor source code modifications have to be incorpo-
rated. To account for the special requirements the existing pro-
gram has to be interfaced with BOINC. Interfacing the software
with BOINC is done via implementing message passing interface
(MPI)-like calls, which account for the communication between
the scientific application and the core client, which in turn
organizes the communication with the project server(s). To illus-
trate how BOINC works, the life-cycle of one job is traced: first a
work generator creates a job and its input-files. BOINC then creates
one or more instances of the job. The core client requests work
via a scheduler request from the server, when it has free capacities.
The scheduler scans the database for available jobs. The client gets
the binary and input files of an application, starts the application,
sends the results back to the project server and reports the job as
completed. A validator checks the output files and potentially
compares matching outputs of the same job. After full completion
the file deleter deletes the input and output files. Volunteers have
complete control over how much work is done at what times, and
can look up their results on the project web pages. Furthermore,
they collect the so-called credit points proportional to the work
their computers did and are ranked in top lists according to their
overall credit value. More details on the BOINC platform can be
found elsewhere;29 an overview of the existing projects is given on
the BOINC web pages.28 In 2005, Korth and Grimme released the
first VC project in chemistry, Quantum Monte Carlo at home
(QMC@home);30 more recently, Aspuru-Guzik and co-workers
presented the Harvard Clean Energy Project.31 We present here
the cleanmobility.now project,32 which is a re-release of the
QMC@HOME project, now with a focus on the search for new
electrolyte materials. The results are based on a modified version
of ORCA,33 but to verify the outcome, computations were also
performed on local computing resources at this stage. The
distribution of other software packages within our project is in
preparation. With our VC project, we would like to help in
finding safer and greener battery materials. This confronts us
with several scientific challenges, amongst others, the estima-
tion of collective properties, addressed in the next section.

3. Methods for estimating collective
properties

We aim at an integrated computational approach for the large-scale
screening of molecular battery materials. As a first step, we evalu-
ated computational methods for the prediction of (single-molecule/
non-reactive) electrochemical stability window rankings.10 The
so-called ‘electrochemical stability window’ (ESW) of a com-
pound can be computed from its oxidation and reduction

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
D

ec
em

be
r 

20
14

. D
ow

nl
oa

de
d 

on
 1

1/
4/

20
25

 1
1:

32
:3

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c4cp04338c


3396 | Phys. Chem. Chem. Phys., 2015, 17, 3394--3401 This journal is© the Owner Societies 2015

potentials (though it needs to be shifted by the computed
potential of the reference electrode to match the experimentally
measured value):

Vox ¼ �
DGox

nF
Vred ¼ �

DGred

nF

One thus needs the Gibbs free energies of oxidation and
reduction:

DGox = DG(X) � DG(X+) DGred = DG(X�) � DG(X)

Individual free energies are usually taken from density
functional theory (DFT) computations by taking zero-point
and thermal enthalpic, entropic, as well as (implicit) solvation
effects into account:

DG = DH � TDS = DE + DEZVPE + DHT � TDS + DGsolvation

As an estimate of the oxidation and reduction potentials one
can look at the electronic energy differences (electron affinity
(EA) and ioniziation potential (IP))

DGox E IP = DEox = E(X) � E(X+)

DGred E EA = DEred = E(X�) � E(X)

which in turn can be estimated from the lowest unoccupied and
highest occupied molecular orbital (LUMO/HOMO) energies:

IP E �EHOMO EA E �ELUMO

In our previous study we have evaluated several computa-
tional approaches and approximations for their impact on
ranking compounds with respect to their EWS. We suggested
a combination of semiempirical quantum mechanical (SQM)
and wave function theory (WFT) methods for an efficient two-
step screening procedure. All screening results presented below
do include the electrochemical stability as a factor, partly based
on SQM and WFT data as previously suggested (the database
benchmark) and partly based on SQM data only (the nitrile set),
as we have found that SQM estimates are usually good enough
for ranking compounds within our extended screening proce-
dure outlined below. In the following, we turn our attention to
the approximate treatment of collective properties with lower
level methods, as no higher-level methods are available for the
fast prediction of these properties. At this point we still do not
take solid-electrolyte-interface (SEI) formation into account, but
schemes for using estimators for complex properties including
SEI formation are in preparation. The results presented here
are thus based on simplified model systems and approximate
computational methods and should be taken with appropriate
care (as simpler problems were shown to require much more
advanced methods sometimes).34 Our main focus is the defini-
tion of a screening strategy, not the benchmarking of lower
level methods against each other, though we are able to present
some data for the comparison of COSMOtherm with ‘pure’
QSPR type models. We furthermore do not consider ionic
liquids here, for which some details of the current screening
setup are not optimal, though our scheme can easily be adjusted

to work for ionic liquids also. Several collective properties are
relevant for improving electrolyte systems. Here we investigate
the possibilities of the COSMOtherm model35 for predicting
boiling and flash points, viscosities (as estimators of ion con-
ductivity), solubilities and free energies of solvation for several
ionic species (as an estimator of solubility again) and of a pure
quantitative structure property relationship (QSPR) model of
Lang for computing melting points.36

COSMOtherm predictions are based on empirical models
which make use of data from electronic structure theory
calculations to allow for the description of hitherto experimen-
tally unknown species also (unlike standard chemical engineer-
ing models, which usually require some compound-specific,
experimentally determined parameters). For COSMOtherm we
compare the performance of density functional theory (DFT)
based estimates with semi-empirical (SQM) ones with respect to the
ranking of candidate compounds. Semi-empirical PM6-DH+ 37–40

calculations were done using MOPAC2012,41 making use of
the COSMO35 solvation model to generate the input for
COSMOtherm. BP8642,43 DFT calculations have been performed
using TURBOMOLE 6.4,44,45 D2 dispersion corrections,46 the RI
approximation for two-electron integrals,47,48 and again
COSMO to generate the input for COSMOtherm. BP86 DFT
calculations (again using D2 and RI) and local pair natural
orbital (LPNO) coupled electron pair approximation (CEPA1)49

(CEPA in the following) calculations were done using a mod-
ified version of ORCA 2.8.50 TZVP, TZVPP and QZVP AO basis
sets51 were employed for TURBOMOLE and ORCA calculations.

More information about the COSMOtherm model can be
found, for instance, in a recent review by Klamt,35 but some details
with direct relevance for the following need to be mentioned: in
COSMOtherm, the liquid viscosity of a pure compound at room
temperature is computed using a QSPR-type model:

ln(Zi) = cAAi + CM2Mi
2 + cNring

Nring
i + cTSTSi + c0

It is based on the surface area Ai of the compound, the
second s-moment Mi, the number of ring atoms Nring and the
pure entropy time temperature TSi, as well as on five para-
meters, which were derived from a set of 175 neutral organic
compounds.

For boiling points at a given pressure, COSMOtherm varies
the temperature of the system until the difference between the
predicted vapor pressure and the given pressure is below
10�4 mbar. The vapor pressure itself is computed via the
chemical potential of compound i in system S from the integra-
tion of the s-potential over the surface of the compound

mS
i = mC,S

i +
Ð

pi(s)ms(s)ds

(using mC,S
i as a combinatorial contribution) and an estimate of

the pure compound’s chemical potential in the gas phase

mgas
i = Ei

gas � Ei
COSMO � oringN i

ring + Zgas

(using E as quantum chemical total energies, a ring correction
term and two parameters o and Z) according to:

pS
i /1bar = exp[(mgas

i � mS
i )/RT]
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Flash points are computed from the temperature dependent
variation of the vapor pressure until the flash point pressure
(FPP) is found,52 which in turn is computed from the molecular
surface area A according to:

ln(FPP) = 22.7–3 � ln(A)

The prediction of melting points was not possible using
COSMOtherm when we initially finished our study, though
this feature has recently been added. We do not present
COSMOtherm melting point predictions here, but instead use
a QSPR model of A. Lang.

The model of Lang uses readily available molecular descrip-
tors (with the number of hydrogen-bond donors and polar
surface area as most important ones here) for the purely
empirical estimation of melting points. Melting points are
especially hard to predict as rather minor differences between
molecular structures can result in large melting point differences
due to packing effects. More details on QSPR methods and the
available software packages can be found in recent reviews.53,54

To get an idea of how well COSMOtherm performs in com-
parison to ‘pure’ QSPR models we did some additional QSPR
calculations using the T.E.S.T. software package.55 Although
benchmarking such methods is not the focus of our work, this
seemed interesting to us, as QSPR models were, for instance,
used to estimate viscosities for the purpose of developing new
ionic liquids.56 For our QSPR predictions, we relied on the
consensus model (the average over all implemented models)
implemented in the T.E.S.T. software package. The details of all
included approaches can be found in the T.E.S.T. user guide. In
these methods, the properties investigated here are predicted
using overall 797 molecular descriptors and relying on experi-
mental data sets for several thousand compounds.

Table 1 shows the predicted and measured8 results obtained
for typical electrolyte solvents. Perusing this table, one finds
that mean average deviations (MADs, about 0.2 cP and 18/23/23
degrees of viscosities and melting/flash/boiling points) are in
the order of about 10 to 15 percent of the relevant property
windows (here, 0.33 to 2.53 cP and �137 to 26/�17 to 160/41 to
270 degrees). The correct ranking of compounds can be investi-
gated by looking at correlation coefficients, such as Pearson’s R
values for linear correlation and Kendall’s t values for non-linear
(rank) correlation. Both correlation measures are very high,
especially for the COSMOtherm-based estimates (with R values
of 0.95 to 0.98 and t values of 0.73–0.78), which implies that the
ranking of compounds with respect to these properties is even
better than the prediction of the actual values. This is a very
promising result for integrated computational and experimental
screening procedures, in which the computational part acts only
as a filter for subsequent experimental high-throughput work.

Table 2 shows a comparison of the performance of
the consensus QSPR method implemented in T.E.S.T. with
COSMOtherm. Mean absolute deviations (MADs) are higher
for the consensus model especially in the case of viscosities.
R and t values are lower for the consensus model, especially the
R values of flash and boiling points. To be fair it should be
mentioned that the consensus melting point prediction model
performed much worse than the one of Lang which we use for
our screenings, with an MAD of 37 K (30 K on the fit set) for the
former, opposed to 18 K for the latter. This clearly illustrates
that better QSPR models compared to the ones implemented in
T.E.S.T. are available, which have a strong focus on toxicity
prediction, not investigated here. Other available QSPR software
packages unfortunately do not supply models for all properties of
interest and none seems to be suitable for our high-throughput
infrastructure.54

Table 1 Calculated estimates (this work) and experimental values (from Xu8) of collective properties of common electrolyte solvents

Viscosity [cP] Melting point [1C] Flash point [1C] Boiling point [1C]

Calculated Measured Deviation Calculated Measured Deviation Calculated Measured Deviation Calculated Measured Deviation

1,3-DL 0.74 0.59 0.15 �75.7 �95.0 19.3 �24.0 1 �25.0 96.8 78 18.8
2-Me-1,3-DL 0.87 0.54 0.33 �40.9 — — �6.5 — — 123.9 — —
2-Me-THF 0.62 0.47 0.15 �97.2 �137.0 39.8 �16.6 �11 �5.6 112.1 80 32.1
4-Me-1,3-DL 0.86 0.60 0.26 �40.9 �125.0 84.1 �8.1 �2 �6.1 121.2 85 36.2
BL 1.10 1.73 �0.63 �36.7 �43.5 6.8 63.1 97 �33.9 237.9 204 33.9
DEC 0.76 0.75 0.01 �37.0 �74.3 37.3 �1.5 31 �32.5 124.8 126 �1.2
DEE 0.90 — — �69.7 �74.0 4.3 12.1 20 �7.9 144.5 121 23.5
DMC 0.61 0.59 0.02 �15.0 4.6 �19.6 �30.7 18 �48.7 78.9 91 �12.1
DME 0.55 0.46 0.09 �59.6 �58.0 �1.6 �31.5 0 �31.5 80.7 84 �3.3
DMM 0.40 0.33 0.07 �98.4 �105.0 6.6 �61.8 �17 �44.8 36.6 41 �4.4
EA 0.50 0.45 0.05 �83.8 �84.0 0.2 �30.0 �3 �27.0 84.2 77 7.2
EB 0.75 0.71 0.04 �86.9 �93.0 6.1 4.3 19 �14.7 134.0 120 14.0
EC 1.81 1.90 �0.09 22.6 36.4 �13.8 97.5 160 �62.5 284.3 248 36.3
EMC 0.69 0.65 0.04 �38.0 �53.0 15 �15.3 — — 103.2 110 �6.8
MB 0.65 0.60 0.05 �83.6 �84.0 0.4 �12.2 11 �23.2 109.1 102 7.1
NMO 1.60 2.50 �0.90 40.1 15.0 25.1 111.7 110 1.7 320.0 270 50.0
PC 1.79 2.53 �0.74 �15.2 �48.8 33.6 102.8 132 �29.2 299.0 242 57.0
THF 0.50 0.46 0.04 �100.1 �109.0 8.9 �37.4 �17 �20.4 81.9 66 15.9
VL 1.41 2.00 �0.59 �17.3 �31.0 13.7 85.4 81 4.4 278.4 208 70.4

MAD 0.22 17.69 22.86 22.64
R 0.95 0.87 0.95 0.98
t 0.78 0.75 0.72 0.76
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4. Example applications
(A) Database benchmark re-evaluation

In a recent study, we screened 100 000 molecules from public
databases for their redox stability.10 Structures were automati-
cally retrieved in the SMILES format and converted using Open-
Babel57 into force field optimized input structures for DFT
calculations. The highest occupied molecular orbital/lowest
unoccupied molecular orbital (HOMO/LUMO) gaps, dipole
moments and elemental composition were used as filters for
identifying 83 (out of 100 000) candidate compounds, which
were used for a systematic benchmarking of quantum chemical
methods. When investigating the ‘hits’ of this screening study in
more detail, later on, many turned out to have unfavorable
collective properties, like high melting points, which nicely
illustrate the need for a multi-level approach like it is presented
here. As a first example application we thus re-evaluate the
results of this earlier study using our improved approach. Using
the previous CEPA ionization potential (IP) and electron affinity
(EA) values as estimators of electrochemical stability, and after
computing viscosities, melting/flash/boiling points, Li+/Mg2+/
Al3+/LiPF6-solubilities and free energies of solvation for all
compounds, we applied the following filtering scheme to iden-
tify the most promising candidates. The COSMOtherm model is
not well suited to describe the properties of small, highly
charged ions and thus these results are likely only meaningful
for the ranking of rather similar compounds. Furthermore,
computed solubilities are just indicated as high for all com-
pounds with reasonable solubility using COSMOtherm, so that
we turned to free energies of solvation for the ions as a rough
estimator of ion solubility, again to be used only to rank rather
similar compounds (which is actually not the case in this
example application, but in the next one, see section B). Free
energies of solvation are highly correlated for the small ions, so
that using one value (we take the one for Li+) is sufficient for
ranking purposes. Compounds with an IP below, an EA above,
and free energies of solvation (which are negative) above the
average were discarded, as well as compounds with melting/
flash/boiling points above 273 K/below 323 K/below 373 K.
Calculations at all levels were successful for 8772 candidates
out of the subset of about 10 000 small organic molecules from
the whole database of 100 000 structures. We take problems with
any of the calculations as an indicator of the complicated
electronic nature of the compound and thus discard it. Filter-
ing left us with 72 structures and we then restricted our list to

53 Pareto-optimal ones, i.e. the candidates which are not equal
to or beaten by another candidate with respect to all properties,
as non-Pareto optimal candidates would offer no advantages
over the remaining stock. To account for the inaccuracy of
our approximate models we binned the computed values in
5 percent intervals before checking for Pareto-optimal cases.
Further results obtained for these compounds are presented else-
where, here we concentrate on the evaluation of the COSMOtherm
model (but all data are made publicly available on our project
web page32).

Table 3 shows the correlation between the different proper-
ties computed. Not unexpectedly, one finds a very good correla-
tion between IP and HOMO values and much lower values for
the correlation between EA and LUMO values. Melting points
are correlated with flash and boiling points, which in turn are
almost perfectly correlated with each other. Free energies of
solvation for different small cations are also highly correlated,
but not correlated to the corresponding values of the large
anionic PF6

� ions. These findings will be discussed in more
detail below, together with the corresponding data for the
second application case.

(B) Nitrile solvents

Abu-Lebdeh and Davidson,58,59 Isken et al.60 as well as Balducci
and co-workers61 recently proposed adiponitrile (ADN) as a new
electrolyte solvent (for different types of applications), which
begs the question of whether there are other nitrile solvents that
might offer advantages over the currently used ones. To inves-
tigate this, we used the Molgen algorithm62 to construct all
‘reasonable’ (poly-)nitrile solvents up to 12 heavy atoms. For
‘reasonable’ structures we hereby assume no C/C double- or
triple-bonds apart from those in aromatic systems and no rings
other than 5- to 7-membered ones, as compounds with such
structural elements would very likely be rather reactive and
unstable. The outcome is converted again using OpenBabel into
force field optimized structures as starting points for BP86/TZVP
and PM6-DH+ optimizations as inputs for COSMOtherm. This
setup gave 4947 structures, calculations at all levels were suc-
cessful for 4897 candidates, and the above filtering scheme left
us with 20 structures, out of which 17 are Pareto-optimal. Most
interestingly, adiponitrile, the compound suggested by several
groups, was on our final list and was thus successfully picked out
of almost 5000 possible candidates (as well as several other small

Table 2 Comparison of the performance of the consensus QSPR method
implemented in T.E.S.T. with COSMOtherm: mean absolute deviation
(MAD), Pearson’s R and Kendall’s t values for the correlation between
properties computed for the systems in Table 1

Property

QSPR COSMOtherm

MAD R t MAD R t

Viscosity 1.15 0.83 0.68 0.22 0.95 0.78
Flash point 26.82 0.77 0.63 22.86 0.95 0.72
Boiling point 37.08 0.63 0.65 22.64 0.98 0.76

Table 3 Pearson’s R and Kendall’s t values for the correlation between
computed properties of the database set, only values with R 4 0.5 are
given

R t

IP/HOMO �0.84 �0.67
EA/LUMO �0.57 �0.29
Melting/flash point 0.65 0.49
Melting/boiling point 0.63 0.48
Boiling/flash point 0.99 0.92
DGsolv(Li+)/DGsolv(Mg2+) 0.97 0.83
DGsolv(Li+)/DGsolv(Al3+) 0.98 0.87
DGsolv(Mg2+)/DGsolv(Al3+) 1.00 0.96
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di-nitriles previously suggested). Compounds supposedly better
than adiponitrile are now investigated experimentally in this
group, so that we can again focus on the evaluation of the
computational models here (but all data are made publicly
available on our project web page32).

Table 4 again shows the correlation between different pro-
perties, now for DFT as well as SQM based estimates. First of
all, values of SQM are very similar to those of DFT, implying
that it is possible to obtain DFT-level ranking results with the
much faster SQM method, see also the discussion of Table 5
below. For this set, viscosities are highly correlated with both
flash and boiling points, which are in turn again perfectly
correlated with each other. Also free energies of solvation for
different small cations are again highly correlated, but still not
correlated to the corresponding values of the large anionic PF6

�

ions. Viscosities, and flash and boiling points are inversely
correlated with free energies of solvation for PF6

�. This implies
that for a given compound class high thermal stability and
good ion solubility often go hand in hand, but usually come at
the price of higher viscosities, i.e. very likely lower ion con-
ductivities. The results obtained for the much more diverse
database set presented above, on the other hand, did not show
a high correlation between viscosities and boiling and flash
points. This indicates that different compound classes show
different relationships between viscosities and thermal stability.

The best way of addressing the challenge of balancing thermal
stability with ion conductivity thus seems to be a diversity
oriented approach, which goes beyond the usual compound
classes (carbonates, nitriles, etc.).

The used COSMOtherm models are parametrized to work on
top of B86/TZVP DFT calculations, but they are also possible to
work on top of SQM computations, which are about 2 to 3
magnitudes faster. It is thus of high interest to investigate the
effect of using SQM instead of DFT information on the ranking
results in more detail. Table 5 shows correlation and error
measures – mean deviations (MDs), mean absolute deviations
(MADs), root mean square deviations (RMSDs) and error spans
(MIMAs) all in kcal mol�1 – for the comparison of properties
computed at the DFT level with those computed at the SQM
level. Perusing this table, first of all one finds very high
correlation values for all computed properties. MD and MAD
values of similar magnitude indicate that systematic shifts are
found for all properties, which are mostly within the accuracy
found for the COSMOtherm approach in comparison to experi-
mental values (Table 1). High error span (MIMA) values never-
theless suggest to re-screen preselections of compounds from
SQM level computations at the DFT level again to exclude
outliers, or to directly use a two-level approach as a consistency
check. Correlation measures close to the ones found for com-
parison of COSMOtherm with experiment (Table 1) allow one to
draw the conclusion that the theoretically less appealing SQM
computations can also be very valuable for large-scale screening
approaches based on the COSMOtherm model.

Finally, Table 6 shows a comparison of the consensus QSPR
method implemented in T.E.S.T. with COSMOtherm for the
nitrile set. Mean absolute deviation (MAD), Pearson R and
Kendall’s t values between ‘pure’ QSPR and COSMOtherm
values are given. Perusing this data one finds that the con-
sensus QSPR model gives substantially different results than
the COSMOtherm approach. In light of our evaluation of
the consensus model for the systems in Table 1 (see above)
and the unavailability of accurate QSPR alternatives that are
suitable for our high-throughput approach, COSMOtherm
seems to be a better choice for our task.

5. Conclusions

We have presented a volunteer computing approach for screen-
ing molecular electrolyte components, evaluated lower-level
methods for computing collective properties and described a

Table 4 Pearson’s R and Kendall’s t values for the correlation between
computed properties of the nitrile set, only values with R 4 0.5 are given

DFT SQM

R t R t

Viscosity/flash point 0.58 0.83 0.59 0.81
Viscosity/boiling point 0.52 0.78 0.54 0.78
Melting/boiling point 0.55 0.41 0.51 0.36
Flash/boiling point 0.99 0.92 0.99 0.92
Viscosity/DGsolv(PF6

�) �0.47 �0.49 �0.50 �0.44
Flash point/DGsolv(PF6

�) �0.74 �0.44 �0.70 �0.41
Boiling point/DGsolv(PF6

�) �0.70 �0.42 �0.66 �0.39
DGsolv(Li+)/DGsolv(Mg2+) 0.93 0.76 0.95 0.79
DGsolv(Li+)/DGsolv(Al3+) 0.95 0.81 0.97 0.83
DGsolv(Mg2+)/DGsolv(Al3+) 1.00 0.94 1.00 0.95

Table 5 Comparison of the performance of SQM and DFT as the starting
point for COSMOtherm: Pearson’s R and Kendall’s t values, as well as
deviation measures (mean deviation MD, mean absolute deviation MAD,
root mean square deviation RMSD and error span MIMA) for the nitrile set,
showing the correlation and deviation between property estimates based
on SQM calculations and the corresponding property estimates based on
DFT calculations

R t MD MAD RMSD MIMA

HOMO 0.96 0.86 3.70 3.70 3.71 4.36
LUMO 0.93 0.60 �1.72 1.72 1.76 3.33
Viscosity 0.95 0.89 0.40 0.50 1.76 79.34
Boiling point 0.95 0.82 25.35 26.69 31.53 548.91
Flash point 0.95 0.83 14.07 14.85 17.81 322.57
DGsolv(Li+) 0.74 0.56 3.64 3.66 3.72 24.61
DGsolv(Mg2+) 0.72 0.50 9.15 9.19 9.31 64.21
DGsolv(Al3+) 0.73 0.50 13.25 13.30 13.49 92.31
DGsolv(PF6

�) 0.97 0.84 �0.30 0.34 0.41 6.33

Table 6 Comparison of the performance of the consensus QSPR method
implemented in T.E.S.T. with COSMOtherm: mean absolute deviation
(MAD), Pearson’s R and Kendall’s t values for the nitrile set, showing the
correlation and deviation between property estimates from T.E.S.T. and
the corresponding property estimates from COSMOtherm

Property MAD R t

Viscosity 2.51 0.37 0.41
Flash point 15.26 0.76 0.62
Boiling point 72.56 0.71 0.59
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protocol for analyzing the results in combination with higher-
level estimators for electrochemical stability windows. A com-
parison with experimental references showed the high value of
COSMOtherm and QSPR models for estimating collective pro-
perties of electrolyte components and especially for ranking
compounds with respect to these properties. Furthermore,
much faster available SQM-based COSMOtherm estimates are
likely almost as valuable as DFT-based ones for this purpose.
Two application examples illustrate the opportunities of our
integrated multi-level approach. Comparing the first study on a
very diverse set of compounds with the second one on nitriles,
we find that a diversity-oriented approach offers more oppor-
tunities for balancing thermal stability with ion conductivity.
From the systematic study on all reasonable nitrile solvents
of up to 12 heavy atoms adiponitrile is found as one of the
17 Pareto-optimal candidates, in accordance with recent sug-
gestions from experimental work (as well as several other small
di-nitriles previously investigated).
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51 A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994,
100, 5829.

52 COSMOlogic GmbH & Co. KG, COSMOthermX UserGuide,
Version C30 1401 and A. Klamt, to be published.

53 A. R. Katritzky, et al., Chem. Rev., 2010, 110, 5714.
54 J. C. Dearden, P. Rotureau and G. Fayet, SAR QSAR Environ.

Res., 2013, 24, 279.
55 T.E.S.T. 4.1, U.S. Environmental Protection Agency, 2012,

www.epa.gov/nrmrl/std/qsar/qsar.html, accessed Nov. 11,
2014.

56 I. Billard, G. Marcou, A. Quadi and A. Varnek, J. Phys. Chem. B,
2011, 115, 93.

57 N. M. O’Boyle, M. Banck, C. A. James, C. Morley,
T. Vandermeersch and G. R. Hutchison, J. Cheminf., 2011, 3, 33.

58 Y. Abu-Lebdeh and I. Davidson, J. Electrochem. Soc., 2009,
156, A60.

59 Y. Abu-Lebdeh and I. Davidson, J. Power Sources, 2009,
189, 576.

60 P. Isken, C. Dippel, R. Schmitz, R. W. Schmitz, M. Kunze,
S. Passerini, M. Winter and A. Lex-Balducci, Electrochim.
Acta, 2011, 56, 7530.

61 A. Brandt, P. Isken, A. Lex-Balducci and A. Balducci, J. Power
Sources, 2012, 204, 213.

62 A. Kerber, et al., MATCH, 1998, 37, 205.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
D

ec
em

be
r 

20
14

. D
ow

nl
oa

de
d 

on
 1

1/
4/

20
25

 1
1:

32
:3

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c4cp04338c



