Issue 7, 2014

Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate

Abstract

Printing has been widely used in the sensor industry for its speed, low cost and production scalability. In this work we present a wholly-printed polypyrrole (PPy) based biosensor produced by inkjet printing bioinks composed of dispersions of PPy nanoparticles and enzymes onto screen-printed carbon electrodes. Two enzymes, horseradish peroxidase (HRP) or glucose oxidase (GoD) were incorporated into the PPy nanoparticle dispersions to impart biosensing functionality and selectivity into the conducting polymer ink. Further functionality was also introduced by deposition of a permselective ethyl cellulose (EC) membrane using inkjet printing. Cyclic voltammetry (CV) and chrono-amperometry were used to characterize the response of the PPy biosensors to H2O2 and glucose. Results demonstrated the possibility of PPy based biosensor fabrication using the rapid and low cost technique of inkjet printing. The detection range of H2O2 was found to be 10 μM–10 mM and for glucose was 1–5 mM.

Graphical abstract: Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2013
Accepted
03 Dec 2013
First published
03 Dec 2013

J. Mater. Chem. B, 2014,2, 793-799

Author version available

Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate

B. Weng, A. Morrin, R. Shepherd, K. Crowley, A. J. Killard, P. C. Innis and G. G. Wallace, J. Mater. Chem. B, 2014, 2, 793 DOI: 10.1039/C3TB21378A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements