MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties†
Abstract
MnMoO4·4H2O nanoplates (NPs) grown directly on Ni foam were synthesized by a facile hydrothermal process. As-grown MnMoO4·4H2O NPs directly supported on Ni foam as integrated electrodes for electrochemical capacitors demonstrated prominent electrochemical performances with a high specific capacitance of 1.15 F cm−2 (2300 F g−1) at a current density of 4 mA cm−2 and a good cycling ability (92% of the initial specific capacitance remained after 3000 cycles). The superior electrochemical performances could be ascribed to the porous structure of interconnected MnMoO4·4H2O NPs directly grown on current collectors, which improves electrolyte diffusion efficiency and increases electron transport. These MnMoO4·4H2O NPs on Ni foam with remarkable electrochemical properties could be considered as a prospective electrode material for the application of supercapacitors.