Issue 34, 2014

Exceptional control of carbon-supported transition metal nanoparticles using metal-organic frameworks

Abstract

This report describes a versatile method to prepare metal nanoparticles supported on nanoporous carbon (M/NC3) via carbonization and carbothermal reduction (CCR) of metal-coordinated IRMOF-3 materials by post-synthetic modification (PSM) with metal precursors (i.e., Ru, W, V, and Ti). Use of IRMOF materials as templates/carbon sources led to desirable pore characteristics in the resulting materials, including high surface area (SNLDFT, 900–2000 m2 g−1) coupled with an increased mesoporosity (Vmeso/Vpore, 0.72–0.86). Formation of carbide phase metals (V8C7 and TiCxOy) was attained at 1000 °C, which is 200–300 °C lower than preparation of these carbide phases via conventional impregnation methods. Smaller sized metal nanoparticles were successfully obtained in the M/NC3 materials compared to materials prepared with un-coordinated metal impregnated IRMOF-1 (M/NC1), primarily due to the ability of IRMOF-3 to coordinate with metal precursors via PSM, leading to site isolation and minimization of aggregation of metal nanoparticles during CCR. Moreover, this coordination provided several additional benefits such as formation of ruthenium nanoparticles without encapsulation by carbon shells and formation of a WC1−x phase with enhanced thermal stability. Furthermore, all M/NC3 materials were shown to be highly active catalysts for liquid phase conversion of model compounds and derivatives of lignocellulosic biomass.

Graphical abstract: Exceptional control of carbon-supported transition metal nanoparticles using metal-organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2014
Accepted
08 Jul 2014
First published
10 Jul 2014

J. Mater. Chem. A, 2014,2, 14014-14027

Exceptional control of carbon-supported transition metal nanoparticles using metal-organic frameworks

J. Kim, G. T. Neumann, N. D. McNamara and J. C. Hicks, J. Mater. Chem. A, 2014, 2, 14014 DOI: 10.1039/C4TA03050H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements