Issue 3, 2014

Domain boundary structures in lanthanum lithium titanates

Abstract

Perovskite-type lanthanum lithium titanate (LLTO) is attracting extensive interest because of its high intrinsic ionic conductivity. The material exhibits a complex microstructure with domains of various sizes and orientations that vary with the lithium content. Based on a systematic examination of both Li-poor and Li-rich LLTO compounds using state-of-the-art scanning transmission electron microscopy (STEM), we reveal the structures and composition of the domain boundaries (DBs) and consider their effect on Li-ion mobility and ionic conductivity, in the process positing the origin of the microstructural variations. DBs in this material are shown to consist essentially of two types: frequently occurring 90° rotation DBs and a much less common antiphase-type boundary. It is found that the 90° DBs are coherent interfaces consisting of interconnected steps that share La sites, with occupancies of La sites higher than in the domain interiors. The origin of microstructural variations in the two compounds is associated with different degrees of lattice mismatch strain at DBs in Li-poor and Li-rich materials. The lattice strain and associated O vacancies, as well as the high La occupancies, at DBs are expected to result in lower interdomain Li-ion mobility, which will have a deleterious effect on the overall ion conductivity.

Graphical abstract: Domain boundary structures in lanthanum lithium titanates

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2013
Accepted
01 Nov 2013
First published
04 Nov 2013

J. Mater. Chem. A, 2014,2, 843-852

Domain boundary structures in lanthanum lithium titanates

X. Gao, C. A. J. Fisher, T. Kimura, Y. H. Ikuhara, A. Kuwabara, H. Moriwake, H. Oki, T. Tojigamori, K. Kohama and Y. Ikuhara, J. Mater. Chem. A, 2014, 2, 843 DOI: 10.1039/C3TA13726K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements