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e graining for ring polymer
solutions

Arturo Narros,a Christos N. Likos,*a Angel J. Morenob and Barbara Caponea

We present a multi-scale molecular modeling of concentrated solutions of unknotted and non-

concatenated ring polymers under good solvent conditions. The approach is based on a multi-blob

representation of each ring polymer, which is capable of overcoming the shortcomings of single-blob

approaches that lose their validity at concentrations exceeding the overlap density of the solution [A.

Narros, A. J. Moreno, and C. N. Likos, Soft Matter, 2010, 6, 2435]. By means of a first principles coarse-

graining strategy based on analytically determined effective pair potentials between the blobs, computed

at zero density, we quantitatively reproduce the single molecule and solution properties of a system with

well-defined topological constraints. Detailed comparisons with the underlying, monomer-resolved

model demonstrate the validity of our approach, which employs fully transferable pair potentials

between connected and unconnected blobs. We demonstrate that the pair structure between the

centers of mass of the rings is accurately reproduced by the multi-blob approach, thus opening the way

for simulation of arbitrarily long polymers. Finally, we show the importance of the topological constraint

of non-concatenation on the structure of the concentrated solution and in particular on the size of the

correlation hole and the shrinkage of the rings as melt concentrations are approached.
1. Introduction

Ring polymers are the most characteristic prototype of topo-
logically constrained molecules.1 Without any modications of
the chemistry, solvent quality or any other physical or building-
block properties of the macromolecules, the mere operation of
joining together the two free ends of a linear polymer chain has
profound impact on the structural and dynamical properties of
single molecules and concentrated solutions of the same alike.
Interest in ring polymers dates from many decades ago, as is
witnessed, e.g., in three pioneering papers on the subject: in the
work of Frank-Kamenetskii et al.,2 the notion of the topological
interaction between two rings has been introduced and analyzed
quantitatively, which arises from the non-concatenation
condition of the same; in the work of Grosberg et al.,3 the
crumpled globule model of rings in the melt has been put
forward, making a strong distinction between the structures of
linear- and ring-polymer melts; and nally, Obukhov et al.4 have
put forward an annealed lattice-animal picture of a ring polymer
in a melt, deriving thereby novel scaling laws for the diffusion
coefficient and the longest relaxation time of a ring, and thereby
revising previous predictions.5,6 Despite their conceptual
simplicity and their highly interesting characteristics, the study
ltzmanngasse 5, A-1090, Vienna, Austria.

V/EHU), Materials Physics Center MPC,
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of ring polymers, both experimentally and theoretically, is
confronted with many obstacles.7 From the theoretical point of
view, the main difficulty of rings in comparison to their linear
counterparts lies indeed in the treatment of the topological
constraints, which, inter alia, prevents the formulation of the
problem in terms of a eld-theoretical approach8 that has
proven extremely fruitful for the treatment of solutions or melts
of linear chains. On the experimental side, the main problems
are related to the difficulty of controlling the synthetic processes
so as to obtain monodisperse rings of identical knotedness.
Accordingly, computer simulations have emerged as an indis-
pensable tool for the analysis of the static and dynamic prop-
erties of ring polymers and their solutions.7–32

A great deal of interest in ring polymers is motivated by their
biological relevance. Indeed, biopolymers such as DNA or
chromosomes are oen found in a topologically constrained
state when they are packed within cells or eukaryotes.3,33–35 In
1993, Grosberg et al.3 demonstrated that molecules that have a
topological constraint appear to be able to survive longer in an
out-of-equilibrium state that allows for more compact struc-
tures, therefore hypothesizing that the long-lasting problem of
packing of e.g., chromosomes in eukaryotes that could not be
explained by packing of linear biopolymers could be solved by
adding a topological constraint. Proteins and DNA display a rich
variety of topological effects, both structural and dynamic. For
example, the DNA of bacteria is present in the traditional
double-helix form, but in contrast to what happens for eukary-
otes, they have circular chromosomes contained in a DNA helix
Soft Matter, 2014, 10, 9601–9614 | 9601
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which is closed into a ring.36 Formation of knots along the
backbone of DNA and their location depending on the varying
rigidity along the backbone of the macromolecule in the bulk37

and in connement38 are other manifestations of the impor-
tance of topological concepts for biologically relevant processes.

At the single-molecule level (equivalent to the innite-dilu-
tion limit of a polymer solution), topology manifests itself in
various ways. Although the innite-dilution gyration radius of
the rings, Rg,0, scales with monomer number N with the same,
Flory exponent n¼ 0.588 as that of the linear chains in athermal
solvents (Rg,0 � Nn), topology effectively expresses itself as a
larger excluded-volume parameter, resulting in a lowering of the
Q-temperature of the rings in comparison to that of the linear
polymers.30,39 A related, remarkable effect is the fact that in
contrast to ideal (i.e., without excluded volume) linear polymers,
ideal ring polymers experience an effective repulsion between
molecules that is purely due to the additional topological
constraint of closing each chain into a loop,31,40 leading to a
scaling Rg,0 � Nn that is identical to that of self-avoiding rings.
The effects of topology become even stronger at higher
concentrations and in particular at those exceeding the overlap
density of the rings. Although the concentration screens out the
excluded-volume interaction for linear chains, resulting in
Gaussian statistics between the correlation blobs of the
chains,41 the topological potential between different rings
cannot be screened out. Accordingly, the size of exible rings in
semidilute solutions andmelts scales with themolecular weight
as Rg � N1/3 for sufficiently long rings exceeding the entangle-
ment length, but it is preceded by a crossover-scaling Rg � N2/5

for shorter chains8,18,22 – see Section 4 for more details. Solutions
of ring polymers present a melt viscosity that is lower by one
order of magnitude with respect to a solution of linear chains in
the same density and under the same solvent conditions.42–45

Investigations on melts of unknotted, non-concatenated
rings7,10,12–14 have shown that they display a higher diffu-
sivity7,10,12–14,23,46 and that the Rouse regime extends to larger
scales than in their linear counterparts.19 Rheological experi-
ments47 and simulations23 have revealed a power-law stress
relaxation, instead of the usual reptation-like exponential
behavior found for linear chains. Semiexible rings, on the
other hand, feature a particular form of self-organization in
semidilute solutions, forming a disordered state of columnar
clusters penetrated by other rings,31 and displaying an unusual
dynamic scenario in which the coherent and the incoherent
correlation functions are decoupled from one another, resulting
in a state that has been termed cluster glass.32

It is evident, thus, that the properties of topologically con-
strained molecules in the semi-dilute regime are extremely
difficult to access, both via theoretical approaches and
computational studies. The difficulty of the latter increases with
polymer size and density of polymers in solution, the larger the
ring and more rings in solution, the more the topological tests
required in order to preserve the original topology of the system.
It therefore becomes of crucial importance to be able to analyze,
simulate and access the semi-dilute regime for molecules with a
ring architecture. A full-monomer detailed representation of
semi-dilute solutions, due to both the high number of
9602 | Soft Matter, 2014, 10, 9601–9614
monomers that it would be necessary to simulate and the high
number of topological checks that would be needed, appears to
be quite prohibitive if simulations have to be performed for very
large polymers in density regimes close and above the overlap
concentration, and therefore a coarse-grained approach is
called for.

The simplest coarse-graining strategy amounts to replacing
the entire ring with a single effective coordinate, usually chosen
to be the molecule's center of mass,20,21 in close analogy in the
case of linear chains.48 This single-blob representation of the
rings already expresses some of the distinct features related to
the ring topology: the resulting effective interaction has a very
different amplitude and shape with respect to the Gaussian
effective interaction of linear chains,21 a feature that has been
recently rationalized in terms of the strong asymmetry in the
sizes of two interpenetrating ring polymers, stemming from the
threading of one through the other.49 Further, the single-blob
approach is sensitive to the type of knotedness of the rings, at
least for moderate sizes of the same.21,49,50 Despite the fact that
the single-blob representation of rings is carrying a clear
signature of the closed-circle topology, it is inadequate to
provide an accurate description of the solution structure in the
semi-dilute and concentrated regimes.21,31 The reason lies in the
multiple overlaps between the single-blobs that become domi-
nant as the concentration increases, leading to a shrinking of
the molecules. As the rings' size gets reduced and the circles
tend to the crumpled-globule conformations induced by their
mutual, unscreened topological interactions,22 the threading
scenario leading to the zero-density center-of-mass effective
potential becomes unlikely, and the overall shape of the rings is
vastly different from the one at innite dilution.49 Known also
for the case of linear polymers,48,51,52 this failure of the single-
blob effective pair potentials to account for the many-body
properties in concentrated solutions is particularly severe for
the case of rings: indeed, the zero-density ring–ring effective
interaction is bound and it has a Fourier transform with nega-
tive parts (i.e., it is of the Q�-type53), implying therefore the
emergence of stable clusters above the overlap concentration.
This prediction, however, is in full contradiction with numerical
and experimental evidence, leading to the unambiguous
conclusion that the single-blob representation is inappropriate
for concentrated ring polymer solutions, as it leads to qualita-
tively erroneous predictions.

In order to deeply explore the semi-dilute regime of a ring
polymer solution, it appears therefore essential to develop a
reliable multi-scale coarse-graining strategy, breaking the rings
into a multitude of blobs that are free of mutual multiple
overlaps. In this work, we set forward an extension of the so
effective segment (SES) or multi-blob (MB) representation to ring
polymers. Such a multi-scale methodology has been recently
introduced and proven to be reliable and quantitative in
reproducing the properties of semi-dilute solutions of linear
chains,54 diblock copolymers,55,56 molecules with a complex
architecture and chemistry, such as telechelic star polymers,57

as well as homopolymer brushes.58 Introduction of topological
constraints into the multi-blob approach has, however, not
been attempted thus far. Our approach brings about a
This journal is © The Royal Society of Chemistry 2014
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reduction of several orders of magnitude in the number of
beads needed to represent a chain of underlying N $ 103

monomers (Kuhn segments). In this work, we will show that the
MB coarse-graining procedure applied to ring polymers is
quantitative in a wide density range. Single molecule properties,
pair potentials and solution properties obtained both with a
full-monomer representation and with a coarse-grained one
have been analyzed, demonstrating the validity of the proposed
methodology.

The rest of this paper is structured as follows. In Section 2,
we present two different microscopic models used in our
simulations of ring polymers as well as the procedure of the
multi-blob coarse graining and the resulting multi-blob model.
In Section 3, we demonstrate, by comparing the results between
the microscopic and the coarse-graining procedures, that the
multi-blob model leaves all single-molecule properties invariant
and that it also preserves the effective potential and the topo-
logical potential between two ring polymers. In Section 4, we
extend the analysis to ring polymer solutions deeply in the semi-
dilute regime, demonstrating that the multi-blob approach
reproduces very accurately the correlation functions between
the rings. We also show the effects that the intermolecular
topological interaction incurs on both the shrinkage of the rings
and on the correlation functions by comparing with simulation
results in which this interaction is (articially) switched off.
Finally, in Section 5 we summarize and draw our conclusions.

2. The microscopic models and their
multi-blob coarse-graining
2.1 Correlation blobs and the central idea of the multi-blob
representation

We begin by setting up the notation for the rest of the paper and
by setting the stage of the multi-blob approach. We consider M
polymer chains enclosed in the volume V; each chain consists of
N (microscopic) monomers. The instantaneous radius of gyra-
tion of any ring at innite dilution, where the effects of other
rings can be ignored, is denoted as R̂g,0 and its expectation value
hR̂g,0i as just Rg,0. At nite concentrations, the second subscript
is dropped and the two quantities are denoted as R̂g and Rg,
respectively. The latter values are, in general, density-
dependent.

The chain density (concentration), r, is dened as r¼M/V. It
is also convenient to dene the overlap density r* as

r* ¼
3

4pRg;0
3
; (1)

and express the concentration in terms of the dimensionless
ratio r/r*. For any microscopic model with monomers of a
characteristic size ‘, one can also dene the monomer
concentration f ¼ Nr and thus, from eqn (1), its value at chain
overlap, f* ¼ Nr*. Since Rg,0 � ‘Nn, it follows eqn (1) that

r* � N�3n; f* � N1–3n, (2)

where n ¼ 0.588y 3/5 is the Flory exponent of the self-avoiding
walk in three dimensions. At the semidilute regime, multiple
This journal is © The Royal Society of Chemistry 2014
overlaps between the polymers take place. It is convenient to
consider then the polymer as a succession of correlation blobs
of size x, the value of the latter being density-dependent. Within
the length scale x, the polymer maintains its self-avoiding
statistics, i.e., the ring or the chain is unaware of the existence of
the other macromolecules. It is straightforward to show that, for
r/r*$ 1, the correlation blob size x shrinks as the concentration
increases and scales as41

x � Rg;0

�
r

r*

�� n
3n�1

yRg;0

�
r

r*

��3=4

: (3)

Note also that x is independent of the degree of polymeri-
zation in the semidilute regime:

x � ‘
�
f‘3
�� n

3n�1; (4)

which follows easily the above scaling laws. Each chain there-
fore ‘breaks into’ a number of nx correlation blobs, every blob
containing gx � x1/n monomers. The monomer number
conservation law, N¼ gxnx, together with the above scaling laws,
yields

nx �
�
r

r*

� 1
3n�1

y

�
r

r*

�5=4

; (5)

meaning that as the concentration increases, more and more
correlation blobs are necessary to represent the chain as a
succession of entities that have no multiple overlaps.

These ideas also play a crucial role in the development of the
multi-blob representation of polymers; however, the latter is a
more general approach. In particular, the idea behind themulti-
blob coarse-graining is that the problem of many-body effective
interactions can be circumvented if the coarse-grained entities
are chosen to be sufficiently small so that only pair overlaps are
signicant. Accordingly, the polymer is rendered as a succes-
sion of nB blobs of g monomers and size rg � gn each. At any
given ratio r/r*, the blob is small enough so that it contains at
most pair-contacts and at the same time big enough so that it
contains a large number of monomers. From the above
discussion, it follows that for the coarse-grained blobs, the
mutually equivalent inequalities

nB $ nx; rg # x; g # gx (6)

have to be fullled. At the same time, the requirements that the
blob interior contains a sufficiently large number of monomers
and that the whole blobbed polymer consists of a large number
of blobs that must be also fullled:

nB [ 1; rg [ ‘; g [ 1. (7)

Whereas the concept of the correlation-blob is used exten-
sively (and with great success) in scaling theory, where one
makes use of this physical picture to derive some general power-
law dependencies of e.g., thermodynamic quantities on the
ratio r/r* the multi-blob approach is more detailed. One aims at
renormalizing the monomer–monomer potentials at the level of
Soft Matter, 2014, 10, 9601–9614 | 9603
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blob–blob interactions and thus at describing the chains at a
coarser, mesoscopic level. Starting, therefore, with some
microscopic, monomer-resolved polymer model, successive
sequences of g monomers (g � rg

1/n) are grouped together to
form a blob, whose size cannot exceed the linear dimension x of
the correlation blob. Following a procedure to be described in
detail in Section 2.3, effective interactions are derived between
these blobs, both the disconnected ones and those that are
tethered to one another. Provided that g is sufficiently large,
these potentials are universal, i.e., independent of the details of
the underlying microscopic model. The multi-blob approach is
thus perfectly suited for the efficient study of polymer solutions
with arbitrarily large degrees of polymerization N.
2.2 The full-monomer models

We consider exclusively unknotted, non-concatenated, and fully
exible homopolymer rings under athermal solvent conditions.
At the microscopic level, we employ two different models that
are already introduced elsewhere,21 which we repeat here for
completeness.

Model I. – here, monomers are modelled as hard-spheres of
diameter d and the connections among them are implemented
as threads of maximal surface-to-surface extension dd (d > 1).
Accordingly, the monomer–monomer interaction Vmm(r) and
the bonding interaction Vbond(r), where r is the distance
between the monomer centers, read as

VmmðrÞ ¼

8><
>:

N for
r

d
\1

0 for
r

d
. 1

(8)

acting among all monomers and

VbondðrÞ ¼

8>>>>><
>>>>>:

N for
r

d
\1

0 for 1\
r

d
\1þ d

N for
r

d
. 1þ d

(9)

for connected ones. Within this representation, we prevent
crossing of the bonds of the rings and thus conserve all the
intra- and inter-molecular topologies avoiding any accidental
concatenations, by setting d ¼ 0.2 and choosing the Monte
Carlo (MC) displacement step to be less or equal to d.

Model II. – for the second full monomer level a so sphere
potential is employed. The monomer–monomer interactions
are given by

VmmðrÞ ¼

8>>>>>><
>>>>>>:

N for
r

sh
\1

43

��s
r

�16
� 9c�16 þ 8c�18

�r
s

�2	
for

h

c
\

r

sc
\1

0 for
r

sc
. 1

(10)

for non-bonded monomers and
9604 | Soft Matter, 2014, 10, 9601–9614
VbondðrÞ ¼

8>>>>>><
>>>>>>:

N for 0\
r

sh
\1

43
�s
r

�22
for 1\

r

sh
\

z

h

N for
r

sh
.

z

h

(11)

for bonded ones. With kB denoting Boltzmann's constant and T
the absolute temperature, we set kBT¼ 3 and choose the values h
¼ 0.843, z ¼ 1.147, and c ¼ 1.15 for the remaining parameters.
In this way, the maximum bond extension is z� h¼ 0.304, thus
we can prevent crossing by choosing a Monte Carlo step less
than this number. The potential of eqn (10) is purely repulsive
and does not show local minima within the interaction range.
The used quadratic correction guarantees continuity of poten-
tial and forces at the cutoff distance. The sum of Vmm(r) and
Vbond(r) yields a combined potential between connected
monomers with a deep minimum at r ¼ 0.955s, which guar-
antees that chains do not cross.

For bothmicroscopic models, the preservation of topological
constraints was additionally checked in the following way: an
articial, concatenated conguration between two rings was
created, and subsequently each ring was pulled in opposite
directions by opposite forces of increasing magnitude. Even at
the strongest pulling forces, in which rings had deformed into
straight-line ‘double-rods’, the two polymers remained linked to
one another, conrming the non-crossing of bonds during
simulation.
2.3 Multi-blob effective potentials and mapping between the
monomer-resolved and the multi-blob models

A reliable coarse-graining, multi-blob methodology needs to be
precise, to be back-tractable onto the microscopic system, and
at the same time it has to provide access to large scale analyses
both in terms of the number of molecules in solution as well as
in terms of the number of microscopic constituents. The coarse-
graining methodology used to address the problem at hand is a
rst-principles approach, which extends the considerations
previously introduced successfully for the case of linear homo-
polymers,54 diblock copolymers,55,56 graed homopolymeric
brushes58 and telechelic star polymers.57 Chains are split into nB
segments (blobs), containing a minimum number of g ¼ 80 to
100 monomers, so that each segment is in the scaling regime,
i.e., its properties are not affected by nite size scaling and
follow general scaling laws. Each one of the segments will be
represented via an effective potential that is extracted at zero
density by simulating two chains, dividing them into dimers,
computing the pair correlation functions between all dimers
and inverting the analytical expansion that links the Meyer
functions to the pair correlation functions.55,56,59 Once the
effective potentials between the various sub-segments of the
chain have been extracted, each ring polymer is simulated as a
ring of blobs instead of as a ring of monomers.

Blobs interact with one another via effective pair-potentials
that are extracted from simulations of two linear chains. In
principle, one would have to consider two chains of nB blobs
each, and derive the effective potentials from those, by means of
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Double-logarithmic plot of the dependence of the infinite-
dilution gyration radius Rg,0 for flexible and unknotted ring polymers
on the number N of microscopic monomers. Red circles correspond
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an inversion procedure. In practice, however, it turns out that
considering two dimers consisting of two blobs each is suffi-
cient. Accordingly, the extraction of the potentials between the
blobs results in coupled integral equations that include
contributions arising from up to four bodies.54,55 The set of
effective interactions consists of a Gaussian shaped potential
that acts between all blobs (tethered and untethered) and a
tethering harmonic potential acting between bonded blobs.
Such effective potentials are universal properties of the class of
polymers analyzed, i.e., they are independent of the underlying
model they have been extracted from.58

In the blob representation, each of the nB blobs has a radius
of gyration, rg; since within each blob there are g monomers, it
holds N ¼ gnB. All the potentials acting between different blobs
involve a single length scale, the radius of gyration of the blobs
rg. In particular, the blob–blob potential Vb(r) acting between all
blobs and the tethering potential 4t(r) acting between bonded,
adjacent blobs, take the forms:

bVb(r) ¼ A exp[�(gr/rg)
2] + B exp[�(dr/rg)

2] (12)

and

b4t(r) ¼ C exp[�(zr/rg)
2] + D(r/rg � r0)

2. (13)

In eqn (12) and (13), b h (kBT)
�1 and the parameters

appearing have the numerical values A ¼ 2.06, B ¼ 0.02, g ¼
0.81, d ¼ 0.10, C ¼ 1.12, z ¼ 0.83, D ¼ 0.54 and r0 ¼ 0.98.

Within an arbitrary microscopic model M having a funda-
mental length scale ‘,† the radius of gyration of a ring polymer
is given by

RM
g,0 ¼ aMR ‘Nn, (14)

where aMR is the numerical coefficient of order unity. The
superscript M denotes the fact that the quantity of interest has
been extracted from the monomer-resolved representation,
whereas the subscript R denotes the fact that it pertains to ring
polymers. On the other hand, and following the framework
developed in ref. 58, the radius of gyration of the ring polymer
in the multi-blob representation is:

RB
g,0 ¼ aBRrgn

n
B. (15)

In eqn (15), the superscript B is an indicator that the blobbed
representation has been used. Indeed, as rg is the only length
scale there, it naturally appears on the right hand-side in lieu of
the scale ‘ of the M-representation in eqn (14), and, similarly, nB
replaces N. Given the fact that each blob contains g original
monomers that form a linear chain, the radius of gyration rg of
the blobs is that of a linear polymer chain contained in a blob
and thus it is expressed as:

rg ¼ aML ‘gn, (16)
† In our case, ‘ ¼ d for Model I and ‘ ¼ s for Model II.

This journal is © The Royal Society of Chemistry 2014
where aML is another constant of order unity, characteristic of
the microscopical model M we use to compute the rg of the
linear chain L in each blob. Using the identity g¼ N/nB, eqn (15)
and (16) yield:

RB
g,0 ¼ aBRa

M
L ‘Nn. (17)

From a comparison of eqn (14) and (17), it follows that the
multi-blob representation induces a rescaling of the zero-
density radius of gyration by a factor 1/a of order unity, which
results from a combination of the pre-factors aBR, a

M
L and aMR as

follows:

RM
g;0 ¼

�
aM
R

aB
Ra

M
L

�
RB

g;0haRB
g;0: (18)

The proportionality factors aba (a¼ L and R; b¼Mand B) that
link the radius of gyration Rg,0 to the number of monomers N in
a polymer, contain information on the average number of
contacts of the monomers with the solvent, on the excluded
volume of the monomers, and on the solvent quality. They are
therefore quantities that depend on the specic model chosen
to represent the system. On the other hand, the scaling expo-
nent n that determines the scaling of Rg,0 with the number of
monomers N within a chain is an universal constant that only
depends on the solvent quality. When different representations
have to be compared, it becomes hence crucial to rescale all
lengths by the respective radius of gyration computed at zero
density, therefore obtained results are universal and indepen-
dent of the description chosen.

The two different proportionality factors can be clearly seen
in the double-logarithmic plot of the radius of gyration of a ring
polymer as a function of the length of the polymeric chain
presented in Fig. 1. The two straight lines shown there run in
parallel; it can be seen that aMR ¼ 0.404 for Model I, whereas
to the full-monomer Model I and black �-symbols to the multi-blob
model. Within the latter, different coarse-graining realizations resulting
from various combinations of g and nB at fixed values of N ¼ gnB are
shown. Dashed lines are fits to a power law, eqn (14) and (17), with the
Flory exponent n ¼ 0.588.

Soft Matter, 2014, 10, 9601–9614 | 9605
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Fig. 2 The three eigenvalues of the gyration tensor of flexible ring

polymers, normalized to Rg,0
2, where Rg;0

2 ¼
X

i¼1;2;3

li, obtained both

with a multi-blob representation and within Model I; the same symbols
are used in the plot for both representations. Results are shown for
single molecules of different lengths and different blobbing realiza-
tions for a given length. As all molecules presented in this work are in
the scaling regime, the average shape of the single polymeric ring is
influenced neither by the coarse graining level nor by the number of
monomers in the macromolecule.

‡ Here, also the expectation value Rg,0 could have been used to scale the horizontal
axes but in this case all curves would practically collapse onto one another,
independent of the value of N.
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aBRa
M
L ¼ 0.282, their ratio yielding the conversion factor a ¼

1.433. Accordingly, when we analyze multi-blob simulation
results and we wish to re-express quantities with the dimension
of length in terms of the microscopic scale ‘, we must perform
an additional rescaling of the same by the factor a ¼ 1.433
(Model I), in order to carry out a comparison with the monomer-
resolved model. In such a way, we eliminate articial discrep-
ancies between the two. Alternatively, carrying out the rescaling
in the reverse order, we can express results of any microscopic
model on the length scale of the universal multi-blob model,
and thus render the properties of the system completely model-
independent. Finally, another option is to reduce the length
scales of each model separately on the corresponding model-
specic Rb

g,0 (b ¼ M and B), and compare the results from
various models in this fashion. We will employ either possibility
in presenting the results in the following section, choosing for
each quantity the length scale most natural to it. Finally, we
note that the pre-factors aba can be easily determined for any
model from simulations of relatively short molecules.

3. One and two rings

Once the multi-blob procedure is set up, it is necessary to test
the level of coarse graining necessary to represent a ring poly-
mer without affecting its properties. In order to do this, single
molecule properties, such as shape parameters and the distri-
bution of the radius of gyration are computed both with the
coarse-grained representation and the microscopic one, and
compared to one another. The same is done for the center-of-
mass effective interaction. The knowledge gained from these
comparisons also serves as a basis for deciding which is the
minimal number of blobs per ring necessary for a faithful
representation of the properties of concentrated systems.

We rst consider single molecule properties. In order to
assess the validity of the coarse graining procedure, we consider
two characteristic quantities, namely the gyration tensor, which
entails information on the shape of the rings, as well as the
probability density P(R̂g,0) of the instantaneous gyration
radius R̂g,0 of the rings. Both quantities have been measured
within Model I and within the multi-blob approach for vastly
different values of N and blobbing fractions, with the number
of blobs per ring, nB, employed in the latter lying in the range
10 # nB # 20.

Analysis of the gyration tensor yields the set of the expecta-
tion values of its three eigenvalues30 l1 > l2 > l3. We compare
these between the multi-blob and the full monomer represen-
tations as shown in Fig. 2. It can be seen that a small number of
blobs, 10 # nB # 20, are sufficient to accurately reproduce the
shape and the asymmetries of the molecule. Within the whole
N-range and independent of the model used, the three eigen-
values are constant and agree across all descriptions of the
rings. The distributions of the radius of gyration have been
measured for Model I and for the multi-blob approach. For the
former, monomer numbers N ¼ 1000, 1500, 2000, 2500 and
3000 have been used, whereas for the latter ve different values
of nB, namely nB ¼ 10, 12, 15, 17 and 20 have been employed.
Selected results, with the gyration radius R̂g,0 expressed on the
9606 | Soft Matter, 2014, 10, 9601–9614
microscopic length scale‡ d, are shown in Fig. 3. The striking
agreement obtained between the two representations for all N
corroborates the validity of the multi-blob approach for isolated
molecules and it establishes that a number of blobs as small as
nB¼ 10 are already sufficient to reproduce the salient features of
ring polymers. At the same time, as each blob contains at least
g ¼ 100 monomers, a very fast simulation of a 10-blob-ring
brings forward the properties of ring polymers with at least
N ¼ 1000 true monomers.

We now turn our attention to a more detailed quantity that
involves two rings and thus it is anticipated to be more sensitive
to the number of blobs used to coarse-grain a ring, namely the
effective interaction between their centers of mass,20,21 Veff(R).
Both the microscopic and multi-blob Hamiltonians of two ring
polymers, H , have the general form:

H ¼ H 11({r
N}) + H 22({s

N}) + H 12({r
N,sN}), (19)

where {rN} and {sN} are the collective coordinates of the
segments of polymers 1 and 2, respectively, H11({r

N}) and H22

({sN}) are the intra-ring parts of the Hamiltonian and
H 12({r

N,sN}) contains all the inter-ring interactions between the
segments. The canonical and topologically faithful partition
function Z T is given as

Z T ¼ Ð ÐdrNdsN exp[�bH ]T. (20)

Note the usage of the notation Z T and exp[�bH ]T with the T-
superscript. This indicates that, in addition to the usual Boltz-
mann weight, expressed in the exponential factor of the
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 The distribution functions of the instantaneous radius of gyration R̂g,0 of ring polymers at infinite dilution, obtained within Model I (full-
monomer) and in the multi-blob representation at different levels of coarse graining. (a) N ¼ 1000 monomers; (b) N ¼ 2000 monomers; (c) N ¼
3000 monomers. The multi-blob results have been obtained using different numbers of blobs, as indicated in the legend of panel (a), which
applies to all panels. Results from the multi-blob simulations have been re-expressed in units of d by using the rescaling in eqn (18).
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Hamiltonian, there is an explicit exclusion from the partition
sum of all microstates that leads to concatenated rings. In what
follows, a T-superscript will always be used to indicate the
presence of this topological constraint, whereas its absence will
denote a usual partition sum, in which concatenated congu-
rations are allowed. Additional constraints on the coordinates
can be formally handled by e.g. introducing appropriate d-
functions in the integrand of eqn (20). The separation between
the centers of mass, for instance, can be formally xed at a
distance R ¼ |R| to dene the constrained partition function
Z T(R) as:

Z TðRÞ ¼
ðð

drNdsNexp½ � bH �Td
 




 1N

XN
i¼1

ðri � siÞ





� R

!
: (21)

With the help of Z T(R) given in eqn (21), the effective inter-
action Veff(R) between the centers of mass of the molecules is
dened as:

exp
�� bVeffðRÞ

�
h

Z TðRÞ
Z TðR/NÞ ¼

Z TðRÞ
Z ðR/NÞ ; (22)

where we have taken into account that when two nite rings are
innitely far apart from one another, they are also non-
concatenated, thus one can set Z T(R / N) ¼ Z (R / N). By
multiplying and dividing the right-hand side with Z (R), one can
decompose the effective interaction Veff(R) into its steric part
Vsteric(R) and the topological potential VT(R):

Veff(R) ¼ Vsteric(R) + VT(R), (23)

the two terms on the right-hand side being expressed as

exp½ � bVstericðRÞ� ¼ Z ðRÞ
Z ðR/NÞ (24)

and

exp½�bVTðRÞ� ¼ Z TðRÞ
Z ðRÞ : (25)
This journal is © The Royal Society of Chemistry 2014
The steric potential Vsteric(R), eqn (24), is thus expressed in
the usual way in which effective interactions between macro-
molecular entities are dened in cases where topology plays no
role. Eqn (23) demonstrates however, that for ring polymers,
Vsteric(R) is only part of the full story: an additional, topological
term VT(R) must be added to it to obtain the full effective
potential Veff(R). Though, as it will be shortly shown, for two
rings VT(R) is only a small fraction of Veff(R), in concentrated
solutions where steric interactions are increasingly screened
out, the topological interaction plays a very important role in
determining the conformations of the molecules and the
correlations between them.

To compute the two contributions to the effective pair
potential in the simulation, we use a generalization of the
Widom insertion algorithm.48,51,60 Our choice is guided by
the fact that as R / N, and since the inter-monomer
potentials are short-ranged, the interaction term H 12({r

N,sN})
vanishes identically and the denominator of eqn (22)
factorizes into the product of the partition functions of two
noninteracting rings. Concomitantly, eqn (22) can be re-
expressed as

exp
�� bVeffðRÞ

� ¼*
exp½ � bH 12ðfrN ; sNgÞ�Td

 




 1N
XN
i¼1

ðri � siÞ





� R

!+
0

;
(26)

where the notation h.i0 indicates that the expectation value
has to be calculated in the ensemble of the non-interacting
Hamiltonian H 0 of two independent rings:

H 0 ¼ H 11({r
N}) + H 22({s

N}). (27)

It might appear at rst sight paradoxical that one is capable
of expressing a constrained free energy as the expectation value
of some quantity. However, as eqn (22) readily shows, Veff(R) is a
difference between two constrained free energies, one at sepa-
ration R and the other at innite separation. Free energy
differences can indeed be calculated very efficiently using
computer simulations.
Soft Matter, 2014, 10, 9601–9614 | 9607
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Widom insertion51,60 takes advantage of eqn (27) in the
following way. First, a very large number of independent and
equilibrated single-ring congurations are generated.
Thereaer, these are combined in pairs by simply pulling one
of the two is such a way that its center of mass lies at a
distance R from the center of mass of the other, i.e., one
molecule is inserted at a distance R from the other. From the
ensemble of these inserted pairs, the expectation value
appearing in eqn (27) is computed. The method is simple and
transparent; however, it is inefficient when the typical
conformations of the interacting entities are markedly
different from those generated within the non-interacting
Hamiltonian. For instance, Widom insertion would not be
appropriate to calculate the effective interaction of a dense
polymer brush with a hard wall, since for close brush-wall
approaches, the massive retraction of the brush hairs,
enforced by the presence of the wall, would result in
congurations that appear extremely rare in the free-brush
case. However, Widom insertion is well-suited for fractal,
open, and penetrable macromolecules, whose effective
interactions do not exceed a few kBTs even at the closest
approaches. It has been successfully employed to linear
chains51 and it has also proven accurate and efficient also for
the case at hand. At the same time, it must be emphasized
that the arbitrary insertion of one ring into the neighborhood
of another always entails the risk of producing a concate-
nated pair. Therefore, due care has to be taken a posteriori
to exclude such cases from the calculation of the expectation
value in eqn (27).

For the case at hand, we proceeded as follows. For each
insertion step, we randomly select two molecules from an
ensemble of L ¼ 104 isolated ring equilibrium congurations.
We then compute, for all possible L ¼ L(L � 1)/2 combinations
of the equilibrium congurations, the probability P TS(R) of
bringing the centers of mass of the two molecules at a distance
R, under the condition that both the topological (T) and the
steric (S) constraints are fullled. To this end, the following
procedure has been followed. Each microstate m(R) in which the
centers of mass of the two rings are separated by R is rst
checked for steric interactions and it is provisionally accepted
with a steric hindrance acceptance probability paccS (m(R))
given by:

paccS (m(R)) ¼ exp[�bH 12(m(R))], (28)

which never exceeds unity, since all cross-ring interactions are
repulsive. In this way, L S(R) out of L congurations survive the
steric test.§

To account for inter-winding of the two rings, we compute
the Gauss linking number, m, which is a measure of the degree
of concatenation of two molecules.20,40 For any microstate m(R),
m is given by
§ Note that for Model I the exponential factor at the right-hand side of eqn (28) is
either zero, if any two monomers of the two rings overlap, or unity, otherwise, and
thus the survival of a microstate is not any more a matter of chance.

9608 | Soft Matter, 2014, 10, 9601–9614
mðmðRÞÞ ¼ 1

4p

þ
C1

þ
C2

ðdr� dsÞ$ðr� sÞ
jr� sj3 ; (29)

where the r- and s-integrations run along the closed contours of
the ring polymers C1 and C2, respectively. When ms 0, the two
molecules are concatenated, while m ¼ 0 implies non-con-
catenation.{ Accordingly, the probability of acceptance for the
combination of steric and topological constraints, paccTS (m(R)),
reads as

paccTS (m(R)) ¼ dm,0p
acc
S (m(R)). (30)

In this way, the number of accepted congurations is further
reduced from L S(R) to L TS(R) and the effective interaction is
computed as

bVeffðRÞ ¼ �ln

�
L TSðRÞ

L

	
¼ �ln½P TSðRÞ�: (31)

The steric part, Vsteric(R), is calculated as �kBT times the
logarithm of the probability P S(R) of passing the steric
requirements, i.e.,

bVstericðRÞ ¼ �ln

�
L SðRÞ
L

	
¼ �ln½P SðRÞ�: (32)

The topological potential is now easily obtained with the
help of eqn (23), (31) and (32) as�kBT times the logarithm of the
ratio of the number of congurations fullling the combination
of T- and S-conditions over those fullling only S:

bVTðRÞ ¼ �ln

�
L TSðRÞ
L SðRÞ

	
¼ �ln

�
P T|SðRÞ

�
: (33)

In the last equation, we introduced the conditional proba-
bility P T|S(R) that a given conguration will fulll the topolog-
ical constraints provided that it fullls the steric ones. This
follows immediately from eqn (31)–(33) as a corollary of the rule
for calculating conditional probabilities:

P T|SðRÞ ¼ P TSðRÞ
P SðRÞ : (34)

For purely repulsive monomers, the contribution Vsteric(R) is
positive, since the proximity of the two molecules restricts the
number of conformers for both, thereby reducing the entropy of
the system. This is also evident from eqn (32), valid only for
repulsive interactions, which expresses bVsteric(R) as minus the
logarithm of a probability and it thus implies bVsteric (R)$ 0 for
all R. However, in solvents of worsening quality, for which
enthalpic terms would be present in the intermonomer inter-
actions, this quantity can indeed develop attractive parts for
some ranges of the intermolecular separation.30,51 The
{ This is not entirely correct. Although m s 0 always implies the existence of
concatenation, the opposite is not true, since there are some particular
situations, such as the Whitehead link, for which m ¼ 0. We have ignored these
special cases here.

This journal is © The Royal Society of Chemistry 2014
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topological potential, on the other hand, is given as bVT(R) ¼
�ln[Z T(R)/Z (R)], and the numerator of the ratio within the
logarithm is always smaller than its denominator, since those
microstates that violate the non-concatenation condition are
included in the partition sum Z (R) but excluded from Z T(R).
Topology sets forth a constraint that inadvertently reduces the
number of permissible microstates, therefore the topological
contribution bVT(R) is non-negative at all R, independent of the
microscopic details of the model. Still, a weak attractive, topo-
logical effective force FT(R) ¼ �VVT(R) can emerge between two
rings at moderately small values of their separation, R # Rg,0/2,
see below.

Results for the effective and topological potentials Veff(R) and
VT(R) are reported in Fig. 4 which are obtained from both the
full-monomer representation (Model I) and the coarse-grained,
multi-blob simulation. The latter has been performed at two
levels of blobbing, i.e., representing each ring with nB ¼ 20 and
nB ¼ 50 blobs. For the former, rings of N ¼ 100 monomers have
been chosen, so that the results are already in the scaling
regime, i.e., independent of the degree of polymerization.21 It
can be seen that already for nB ¼ 20, the agreement between the
full-monomer and the coarse-grained approaches is very good,
discrepancies between the two models being at most of the
order of 5%, whereas for nB ¼ 50 the agreement is perfect. The
characteristic plateau20,21,30,40 of Veff(R) for R # Rg,0/2 is nicely
reproduced by all approaches. We also note that the results for
nB ¼ 20 and nB ¼ 50 compare much better with one another
than the ones for N¼ 20 and N¼ 50 for Model I,21 which are not
even in the scaling regime in that case. So segment interac-
tions lead to a much more rapid approach to the scaling limit
than hard ones.

The topological effective potentials obtained both with the
two levels of coarse-graining in the multiblob representation
and with the full-monomer model are quantitatively compa-
rable to those predicted by Hirayama et al.,40 who employed the
self-avoiding polygon model, by Bohn and Heermann,20 who
Fig. 4 The effective potential Veff(R) (left vertical axis) and the topo-
logical potential VT(R) (right vertical axis) between the centers of mass
of two flexible, unknotted and non-concatenated ring polymers.
Results have been obtained using a full-monomer and two multi-blob
approaches, as displayed in the legend and explained in the text.

This journal is © The Royal Society of Chemistry 2014
performed lattice simulations, as well as by Narros et al.21 in
their off-lattice simulations. As predicted by the various
authors, VT(R) is positive and it displays a maximum at
R y Rg,0/2, which accounts for about 13% of the maximum
value of the total effective potential.

As regards the performance of the coarse-graining proce-
dure, while both levels of coarse graining are able to qualita-
tively reproduce the shape of the microscopic effective potential
very accurately, the data obtained with a ner coarse graining
show a truly excellent overlap with those extracted with a full
monomer representation. As the effective pair potentials are
extremely sensitive to the internal degrees of freedom of a
molecule, it appears that even though single molecule proper-
ties are perfectly reproduced already with nB ¼ 10 blobs (see
Fig. 3), in order to quantitatively reproduce the many body
contributions in the effective pair potential a ner coarse
graining is required, namely nB ¼ 50. A possible source for the
discrepancies between the few-nB-results and the full-monomer
ones may lie in the implicit assumption made in the calculation
of the Gaussian linking number m that the so blobs are con-
nected with straight line segments with one another. When
viewed not as an ad hoc model, however, but rather as a
description emerging from a microscopic picture, it should be
realized that each blob contains a large number of uctuating
monomers. Accordingly, whereas the assumption of straight-
line connections between the blob centers might lead to
concatenated conformations, there still exist underlying full-
monomer microstates compatible with the blobbed conforma-
tion that are not concatenated and vice versa. This effect, which
is stronger for small nB-numbers, manifests itself predomi-
nantly on the topological potential. Indeed, as it can be seen in
Fig. 4, the nB ¼ 20-result for VT(R) at the maximum of the same
differs by its microscopically determined counterpart by about
13% and it accounts for the main part of the discrepancies for
Veff(R) as well. To avoid the inuence of such artifacts, we will, in
what follows, always represent multi-blobbed ring polymers
with nB ¼ 50 blobs to explore the properties of semi-dilute
solutions.

4. Concentrated solutions

Once ensured that both single molecule properties and effective
pair potentials are reproduced by our coarse-graining method-
ology, we focus our attention on the properties of semi-dilute
ring polymer solutions upon augmenting densities. To deeply
explore the semi-dilute regime, we performed with both repre-
sentations of Monte Carlo simulations of the microscopic
Models I and II as well as of the multi-blobbed rings for a range
of densities 0.5 # r/r* # 7. The highest density simulated with
the microscopic models was r/r* ¼ 4, while the multi-blob
approach allows us to easily explore higher densities; we
simulated up to r/r* ¼ 7 in this work. For all densities and all
models, a number ofM¼ 350 rings have been simulated in N run

¼ 16 independent simulation runs, employing periodic
boundary conditions and different initial congurations, and
adjusting the size of the simulation box to achieve the desired
ratio r/r*.
Soft Matter, 2014, 10, 9601–9614 | 9609
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Fig. 5 The concentration-dependent gyration radius Rg of unknotted
and non-concatenated flexible ring polymers, reduced over its value at
infinite dilution, Rg,0, as a function of the ratio r/r*. Results obtained
from simulations of different models are shown, as indicated in the
legend. The multi-blob simulations were carried out using rings of nB
¼ 50 blobs. For comparison, runs in which concatenations were arti-
ficially allowed were also performed, and the results from those are
denoted as ‘no T’. The two lines with slopes �1/4 (solid) and �1/8
(dashed) are shown to compare with theoretical predictions in which
the topological interaction is taken into account or omitted, respec-
tively (for more details, see text).
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To grow the rings to their desired size and ascertain that no
concatenations take place, we proceeded as follows. First, we
randomly placed in the simulation box M ¼ 350 small,
unknotted and non-concatenated mini-rings consisting of four
monomers each, i.e., rings much smaller than the required ones
and thus presenting no difficulties in placing in the box.
Second, we grew them to the desired size (N ¼ 50 or 100 for
Models I and II, and nB ¼ 50 for the multi-blob model) by
sequentially adding monomers to them during a Monte-Carlo
simulation that serves exclusively to grow the rings up to their
desired size. Concatenations aer the addition of every single
monomer were prevented using the algorithm presented in the
Appendix of ref. 30. Aer the desired molecular size N(nB) for
each molecule was reached, long MC simulations in each one of
the N run boxes were performed to equilibrate the systems.
Equilibrium is achieved when the statistical average of the
gyration radii taken over all molecules in all simulation cells
does not change any more across several saved congurations.
The MC steps employed were single-monomer (blob) moves as
well as three types of collective moves: simple- and double
cranksha-moves, as well as rigid translation of the ring as a
whole.61,62 For an explanation of the cranksha moves and the
topology checks employed for the same, we refer the reader to
the Appendix.

For Models I and II, topology is preserved under individual
monomer moves for a sufficiently small displacement step. This
is the case neither for the crank-sha moves in the microscopic
models nor for any type of move in the multi-blobbed model. To
guarantee the absence of concatenations, we could have
employed the Gaussian linking numberm criterion used for the
effective potential, but such a test becomes prohibitive when the
number of molecules in solution is high. We therefore opted for
the bond-crossing algorithm described in the Appendix of ref.
30, which, whenever two bonds meet, treats them as if they were
hard. The advantage of this algorithm is that the checks per-
formed are local around each bond for which an attempt has
been made to be moved, whereas the Gaussian linking number
requires the calculation of a double integral over both rings that
need to be checked for being linked.

Furthermore, aer an equilibrium state has been reached,
we performed one additional test by enforcing an annealing/
relaxation process as follows: we carried out additional MC
simulations, in which we perturbed the rings by imposing
harmonic center-of-mass potentials on each ring that expanded
and compressed its molecular size away from the original state
of assumed equilibrium. Subsequently, these potentials were
switched off; we checked whether the rings relaxed back to their
original size aer this procedure, conrming that this was
indeed the case. Moreover, we also checked that the molecules'
R̂g-distributions in each of the N run simulation runs were
similar between the different boxes, i.e., they showed overlap
within error bars. Any two saved congurations are separated by
3 � N � M collective moves plus 100 � N � M single-monomer
moves, whereby, for the multi-blob model N is replaced by nB.
Finally, we have saved 20 congurations for each simulation
box, obtaining an ensemble of 20 � N run � M ¼ 112 000
equilibrated and statistically independent congurations for
9610 | Soft Matter, 2014, 10, 9601–9614
each density considered, which have been used to analyze the
results.

Results from our simulations for the density-dependent
radius of gyration Rg are shown in Fig. 5. The observed
shrinking of the polymer size for r/r* > 1 can be understood in
the framework of the correlation-blob-model sketched in
Section 2.1. The polymer consists of nx correlation blobs, each
of size x, performing a random walk characterized by some
exponent y. Accordingly, the gyration radius of the polymer
depends on x and nx as

Rg � xnyx. (35)

Using eqn (3) and (5), eqn (35) yields a power-law depen-
dence on density, namely

Rg � Rg;0

�
r

r*

�x �
r

r* . 1

�
; (36)

with the exponent

x ¼ � n� y

3n� 1
: (37)

Note that in the melt, where x / ‘ and nx / N, eqn (35) is
valid for the polymer size at all scales.

If the correlation blobs also performed a self-avoiding
random walk, we would have y ¼ n and polymers would not
shrink at all for r > r*. However, the concentration screens out
the excluded volume interactions,41 and linear chains adopt in
concentrated solutions Gaussian-walk conformations at scales
larger than x. This implies y ¼ 1/2, leading via eqn (37) to the
well-known result x ¼ �1/8 for linear polymers.41 For rings,
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 The pair distribution functions g(R) between the centers of
mass of ring polymers, computed with and without topology check
(‘no T’) within the multi-blob representation. From bottom to top: r/r*
¼ 0.5, 1.0, 2.0, 3.0 and 4.0. For clarity, each curve has been shifted up
by successive steps of 0.5. The figure clearly shows that for densities r
> rT y 2r*, the pair distribution functions computed without topology
check differ from the ones computed with the topology check.
Allowing for concatenations results in a stronger interpenetration
between the molecules.
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things are different. The topological interactions between
different rings cannot be screened out, thus the exponent y

cannot be the one corresponding to a Gaussian random walk.
The value of this exponent has been an issue of a long debate.
Previous theoretical arguments,5 supported thereaer by
computer simulations7,9–13,15 seemed to converge to a value y ¼
2/5 for this exponent. However, more recent simulations with
longer chains as well as more sophisticated theoretical
approaches8,11,17–19,22–25 show that the situation is a bit more
subtle: for very long chains whose length N exceeds the entan-
glement length63 Ne, the exponent is y ¼ 1/3, corresponding to a
collapsed lattice animal. However, for N < Ne, a broad crossover
regime that can cover several decades inN exists and for which a
power-law dependence with the exponent y ¼ 2/5 is valid.

The results shown in Fig. 5 can now be discussed in this
context. To begin with, the multi-blob approach yields results
that are identical to those obtained from the monomer-resolved
simulations from two different microscopic models, underlying
once more the reliability of the former, now for a very broad
range of concentrations. Going into a more detailed, quantita-
tive analysis of the results, it can be seen that two power-law
regimes emerge for the shrinkage of Rg as a function of the ratio
r/r*. As pointed out also by Iyer et al.,16 there exists a concen-
tration rT > r* that marks a crossover between a regime in which
topology is not effective in determining the shrinkage of the
rings (for r*# r# rT) and a regime where topology is dominant,
r $ rT. In our case, rT y 2r*. Indeed, the power-law decay of Rg

can be tted with a line of slope �1/8 up to rT, consistent with a
Gaussian random walk of the correlation blobs, and identical to
the behavior of linear polymer chains. For r > rT, on the other
hand, the decay becomes much more rapid, the power-law
switching over to a decay with an exponent �1/4, which is
consistent with y¼ 2/5. This value of y corresponds to the broad,
crossover regime for N < Ne mentioned above. Indeed, even at
the highest density considered for the microscopic models, the
monomer density never exceeds a typical value fmax y 0.48‘�3.
Measurements and estimates for the entanglement length of
similar models63 yield Ne y 30 for f¼ 0.85‘�3 and Ne y 200 for
f ¼ 0.23‘�3. We are, evidently, far away from the asymptotic
regime N > Ne in which the y ¼ 1/3-exponent holds, probing
instead the y ¼ 2/5-range, which, by virtue of eqn (37), results in
x ¼ �1/4 as the results in Fig. 5 demonstrate. The strong
fulllment of the inequality N < Ne at the r/r*-ratios considered
here has been explicitly conrmed by the estimates of the
entanglement length in ref. 26, ascertaining that there is no
signicant entanglement at the blob length scale.

Our claim that topology is the single factor determining the
� (r/r*)

�1/4-power law for the shrinkage of the star is unam-
biguously proven by performing simulations without the
topology check, marked ‘no T’ in Fig. 5. Allowing for ring
concatenations leads to the usual, �(r/r*)

�1/8-power law over
the whole density range explored, and there is no crossover to a
new exponent at rT any more: as far as their scaling properties
are concerned, rings would behave as linear chains in the
concentrated regime if concatenations were allowed. At the
same time, it must be emphasized that rings would not be
identical to linear chains in their more detailed properties, such
This journal is © The Royal Society of Chemistry 2014
as e.g. their innite-dilution effective interaction Veff(R) or their
pair distribution function g(r). The former is evident from the
results shown in Fig. 4. Without the topological constraint,
Veff(R) would be identical to Vsteric(R), i.e., Veff(R) / Veff(R) �
VT(R), and the last expression results in a potential markedly
different from the Gaussian interaction between polymer
chains.

To investigate the effect of topology on the pair distribution
function between the centers of mass, g(R), we have repeated the
simulations without the topology check (‘no T’); the results are
shown in Fig. 6. It can be seen that, in full consistency with the
results for the radius of gyration, marked differences between
the correlation functions with and without topological check
arise from a density r$ rT on. In particular, the degree of inter-
penetration between the rings grows when concatenations are
allowed, as expected. The effects of the topology are clearly
visible in g(R) up to its main peak, R y 7d, corresponding to
y1.2Rg,0 ory1.6Rg at r/r*¼ 4 for N¼ 100. However, even in the
absence of the topological constraint, the correlation hole is
deeper and broader than for the case of linear chains at the
same values of the concentration.48 Due to their cyclical archi-
tecture, even ‘ghost rings’ are less penetrable objects than linear
chains.

We nally turn our attention to the pair distribution function
g(R) between the rings' centers of mass, comparing the results
from Model I and from the multi-blob representation as shown
in Fig. 7. The excellent and parameter-free agreement between
the two underlines the ability of the multi-blob approach to
reproduce the structural correlations in concentrated ring
polymer solutions. The clustering artifacts caused by the single-
blob representation on the basis of Veff(R) alone are removed.21

No inversion procedure of g(R) is any more necessary to yield
strongly density-dependent, single-blob effective potentials.21
Soft Matter, 2014, 10, 9601–9614 | 9611
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Fig. 7 The pair distribution functions g(R) between the centers ofmass
of unknotted, flexible and non-concatenated ring polymers at various
polymer densities r/r*. Shown are results from both the full-monomer
simulations of Model I with N ¼ 100 hard monomers per ring (for r/r*
¼ 0.5, 1.0, 2.0, 3.0 and 4.0) and the multi-blob simulation with nB ¼ 50
blobs per ring. From bottom to top, densities are increased in steps of
Dr¼ 0.5r*, starting from the value r¼ 0.5r*. For clarity, each curve has
been shifted up by an amount of 0.5 from the preceding one.
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Indeed, the latter is merely an expression of the increasingly
strong many-body interactions that are obtained when one
insists at describing mutually overlapping ring polymers as
pairwise-interacting single blobs. Once the rings are divided
into a sufficient number of smaller segments, each one still
large enough to contain a large number of monomers, and
these segments have overwhelmingly pair-contacts, the need to
resort to density-dependent effective interactions is not present
any more. The system can be described by means of fully
transferrable, realistic and reliable pair interactions alone.
Fig. 8 Simple crankshaft move. The smaller portion of the ring poly-
mer is rotated to an angle u around the axis connecting two random
monomers.
5. Concluding remarks

We have presented a multi-blob representation of unknotted
and exible ring polymers, which results in a description of ring
polymers by means of effective potentials that are universal, i.e.,
independent of the microscopic details of the underlying
model. The interactions are fully transferrable and they provide
parameter-free agreement with microscopic results for a wide
range of concentrations deeply into the semidilute regime. A
length-rescaling involved in adjusting the results of the multi-
blob representation back to the microscopic ones is neither
arbitrary nor dependent on the concentration but rather an
ingredient inherent in the multi-blob approach. The value of
this numerical re-scaling factor of order unity can be deter-
mined a priori and independent of the nite-density simula-
tions, on the basis of the scaling laws for moderately sized
chains and rings in the microscopic and the multi-blobbed
representations. With the help of the latter, arbitrarily long
polymers can be simulated at a small fraction of the computa-
tional cost that would have been required in a full-monomer
representation of the same.

Efficient checks for the topological, no-concatenation
constraints on the ring polymers have been introduced and
successfully implemented, demonstrating the crucial role
9612 | Soft Matter, 2014, 10, 9601–9614
played by the latter in both the shrinkage and the correlations
among rings in solution. At present, our work has been limited
to exible and unknotted ring polymers in athermal or good
solvents. Future studies should focus on the extension of these
ideas to solvents of varying qualities and also on the open issue
of a proper accommodation of knotting in a multi-blob repre-
sentation of ring polymers.
A Appendix: crankshaft algorithms

In this Appendix, we describe the simple- and double-crank-
sha moves as well as the algorithm employed to make sure
that no topological violation takes place for the accepted ones.
What follows is valid both for the full-monomer and for the
coarse-grained simulation.
A.1 Simple cranksha

This move selects two random monomers in the ring polymer
and it rotates the shorter of the two portions of the ring by a
random angle u around the axis that connects the two mono-
mers. In Fig. 8, we show a sketch of the move and the associated
geometry. The algorithm for generating and accepting/rejecting
the move is described below.

1. Randomly select a monomer i in the chain.
2. Randomly select the second monomer j in the portion of

the chain such that 2 <|i� j| < N/3. In the following notation i < j
(the case i > j is symmetric by construction).

3. Dene the rotation axis as R ¼ ri � rj.
4. Select a random angle u ˛ [a,�a]. Here, a is chosen under

the constraint that the largest of the arc-lengths of the mono-
mers generated by the rotation does not exceed the length of its
chord by a certain thresholdD, chosen in this case to beD¼ 1.1.

5. Calculate the new location of all monomers k ˛ (i, j) aer
the rotation R (R,u) as {r 0

i+1,.,r 0
j�1} ¼ R (R,u){ri+1,.,rj�1}. The

rotation generates a surface S spanned by the rotating bonds.
Triangulate this surface by straight lines shown in Fig. 8 as red
segments.

6. Compute the energy of the old and the new congurations,
E and E0, and performMetropolis Monte Carlo for the attempted
move on the basis of DE ¼ E0 � E.
This journal is © The Royal Society of Chemistry 2014
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Fig. 9 Sketch of a double crankshaft move.
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� If the movement is (provisionally) accepted, continue to
step 7.

� Otherwise go to step 1 (move REJECTED).
7. For each of the bonds around the surface S that could have

crossed it during its generation, check whether this is the case
for any of the triangles of S shown in Fig. 8. Employ the algo-
rithm of the Appendix of ref. 30 for this check.

� If any of the checks is positive (there is crossing of links),
the move is REJECTED and go to step 1.

� Otherwise the movement is ACCEPTED and continue to
step 8.

8. Update the conguration and the total energy.
A.2 Double cranksha

The double cranksha move is a variation of the simple
cranksha in which a part of the rotated segment undergoes the
inverse rotation. In this way, a part of the ring is just ‘lied up’
as shown in Fig. 9.

1. Randomly select a monomer i in the chain.
2. Randomly select the second monomer j in the portion of

chain such that 2 < |i � j| < N/3. In the following notation i < j
(the case i > j is symmetric by construction).

3. Dene the rst rotation axis as R1 ¼ ri � rj and the second
rotation axis R2 ¼ r 0

i+1 � r 0
j�1, primes denoting the position

vectors aer the rst rotation.
4. Select a random angle u ˛ [a, �a] as before.
5. Perform the rst cranksha rotation, R (R1,u), bringing

the monomers to the positions {r 0
i+1,.,r 0

j�1} ¼ R (R1,u)
{ri+1,.,rj�1} and the second one, R (R2,�u), bringing the
monomers to the positions {r 0 0

i+2,.,r 0 0
j�2} ¼ R (R2,�u)

{r 0
i+2,.,r 0

j�2}. The combination of these generates a surface S
that is triangulated as shown in Fig. 9 by the red segments.

6. Follow the same steps from step 6 as for the case of the
simple cranksha.
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