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Vibro-levitation and inverted pendulum:
parametric resonance in vibrating droplets and soft
materialsy

Rahul Ramachandran and Michael Nosonovsky™

The phenomenon of liquid droplets “levitating” or bouncing off a liquid vibrating surface has attracted
attention of scientists due to its possible application in microfluidics and novel nanostructured
superhydrophobic materials. Several models have been suggested in the literature, and the effect is
usually attributed to non-linear viscosity. Here we suggest a simple model relating the effect to the
parametric resonance as described by the Mathieu equation, which explains stabilization of an inverted
pendulum with vibration foundation. Small fast vibrations can be substituted by an effective “levitation”
force. We present modeling and experimental results for oil droplets and discuss how the mathematical
separation of the slow and fast motion provides insights on the relation of vibro-levitation of oil droplets
and soft materials with the vibro-stabilization of an inverted pendulum, and the “Indian rope” and

www.rsc.org/softmatter “Cornstarch monster” tricks.

1 Introduction

Levitation (from Latin levitas lightness) is the process by which
an object is suspended by a physical force against gravity. While
levitation was claimed by many ancient spiritual and occult
teachings and studied by scholars including Sir Isaac Newton,
who investigated the possibility of levitation as an opposite
force to gravitation,' physics investigates several ways of levi-
tation including magnetic, electrostatic, acoustic, aerodynamic
and others.” Acoustic levitation is one possibility of a particular
interest. The phenomenon is based on the non-linear nature of
intense sound waves which results in acoustic radiation pres-
sure creating an average positive force on a suspended object
which resists the weight of the object.?

Droplets, despite their apparent simplicity, constitute quite
complex objects involving such properties and effects as the
surface tension, Laplace pressure, capillary waves, and non-
linear viscosity. Droplet transport, coalescence, and bouncing
off solid and liquid surfaces is still not completely understood,
since it involves complex interactions and can lead to compli-
cated scenarios of droplet evolution. This complexity of droplet
behavior makes them suitable for various applications in novel
smart nanostructured materials, ranging from super-
hydrophobicity and icephobicity to microfluidic applications
where droplets can serve as micro-reactors for various chemical
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compounds carried by coalescent water droplets.*™® It has been
shown that droplet coalescence can realize the Boolean logic
and thus a “droplet computer” can in principle be created.'”

Recent studies showed experimentally that incoming drop-
lets can bounce-off from a vibrating liquid surface thus leading
to the “walking droplets” which, in a sense, combine the
properties of waves and particles thus serving an illustration of
the particle-wave duality.”*** The effect of bouncing droplets is
thought to be similar to the acoustic levitation due to non-linear
viscosity in a thin film which leads to hysteresis. However, a
detailed model of such effects remains quite complex and
several ideas have been suggested in the literature.”*>*

It was suggested®® that the classical stability problem of an
inverted pendulum on vibrating foundation has relevance to a
diverse class of non-linear effects involving dynamic stabili-
zation of statically unstable systems ranging from the vibra-
tional stabilization of beams, to novel “dynamic materials,”
the transport and separation of granular material, soft
matter, bubbles and droplets, to synchronization of rotating
machinery. In these problems, the small fast vibrational
motion can be excluded from the consideration and
substituted by effective slow forces acting on the system
causing the stabilizing effect.

In this paper we suggest a simple analogy between levitating
droplets over a vibrating liquid surface and a well known
mechanical system consisting of an inverted pendulum on a
vibrating foundation. This analogy sheds light on the necessary
conditions for droplet levitation. We further discuss the relation
of the phenomenon to other non-linear vibration-caused
effects, such as the vibro-levitating “Indian rope” magic
trick,>*® the “cornstarch monster” trick, vibration-induced

Soft Matter, 2014, 10, 4633-4639 | 4633


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/C4SM00265B
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM010026

Open Access Article. Published on 01 May 2014. Downloaded on 10/24/2025 12:47:06 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

phase transitions,* as well as possible applications for “smart”
dynamic nanocomposite materials.*®

2 Model

2.1 The separation of slow and fast motion and the inverted
pendulum

The stabilization of an inverted pendulum on a vibrating
foundation is a classical dynamic problem, which has been
studied by Stephenson in 1908 using the Mathieu equation
approach.’"** Kapitsa suggested in 1951 a different approach
using the separation of the fast vibrational motion over slow
oscillations.*® The equation of motion for such a general system
can be written in the form

N dmr
=——" Q 1
mx P +f cos Qt 6))]

where I1(x) is the potential energy, m is the mass, Q is the
frequency of vibration (which is much greater than the natural

drn
frequency of the system), F = — F is a “slow” force and f cos Qt

is a fast oscillating force of constant amplitude f. The solution is
sought as a sum of the slow and fast oscillating motions x = X(¢)
+ £(t). The fast component ¢ is assumed to be periodic with the

21/ Q
average (£(¢)) = (Q/2m) L &(r)dt = o.

The “fast” component of motion disappears on the “slow”
time scale. To compensate for this an additional effective force
is introduced into the equation of motion for the slow compo-

- dI1
nent X yielding the equation of motion mX = — el where
1 —H+T<éz>—n+ S 2)
o 2 - 2mQ*

is the effective potential energy. Note that an unstable equilib-
rium (a local maximum of I1(X)) can stabilize by the addition of

the always-positive-definite term §<52>

As an example, consider a system of an inverted pendulum
being stabilized in the upside down equilibrium position by the
harmonic vibration of its foundation (Fig. 1). The length of
the pendulum is L and mass is m. The harmonic oscillation of
the foundation is in the form A cos Q¢ where A is the amplitude

IAcos.m

vibration

no vibration

Fig.1 An inverted pendulum on a foundation vibrating with a periodic
displacement A cos Qt can be represented as an inverted pendulum
stabilized by a spring k.
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of vibration and  is the frequency of vibration (Q > \/%) . Its
equation of motion is given by

Ly = g sin ¢ — AQ? sin ¢ cos Q¢ 3)

Substituting f = AQ” sin v into eqn (2), the effective potential
energy is given by

202
Hyr = mgL( —cos Y + Ii;i sin’ 1//> (4)

The effective stabilizing force is now given by

9 (A*Q*m . , mA2Q*
V—w( 7 sin 1//>—7 ) sin 2y (5)

For small angles, the stabilizing force is equivalent to the
action of a linear elastic spring force V = —ky that keeps an

inverted pendulum in equilibrium with the effective spring
202

constant k= . The stability criterion is given by the

condition in eqn (4) being a positive-definite function near the
state of equilibrium

A2Q* > 2gL (6)

Note also that eqn (3) can be presented in the form of
Mathieu equation,
2

. g AQ o
w_z(l—?cosgt)smxpfo )

The stability of motion governed by eqn (7) can be studies by
the standard methods, which are valid in the assumption of
small values of AQ?/g.

2.2 Liquid droplet levitating on a vibrating foundation

Consider a liquid droplet with the mass m above a flat surface.
We assume that the droplet has the shape of a truncated sphere
and thus is characterized by the radius R, height 4, and the
radius of the foundation x (Fig. 2(a) and (b)). The total energy of
the droplet involves the gravitational potential energy mgz,
where z is the position of the center of mass, and the free
surface energy Ay, where A is the droplet's surface area and vy,
is the surface free energy per unit area. We assume that the
droplet is small enough in comparison with the capillary length
Ae = /7vL/pg, where p is the density; therefore, the capillary
contribution prevails over the gravitational one. The capillary
length for water (v, = 0.07 N m ™, p = 10° kg m ) at standard
temperature and pressure is about A. = 2.6 mm, whereas for
corn oil (y, = 0.032 Nm™", p = 900 kg m—>) A, = 1.9 mm.
The volume, surface area, and the position of the center of
mass above the foundation of the truncated sphere are given

by™

V= %nh2(3R —h) = %'rcR3 (2 — 3cos 0 + cos’ 0) (8)

This journal is © The Royal Society of Chemistry 2014
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(a) and (b) The droplet as it spreads from a full sphere to a spherical cap of radius R, (c) energy of a droplet (corn oil, R, = 0.25 mm, vy, =

0.032 N m™?) as it coalesces with the bulk liquid, and the similarity of this energy function to that of an inverted pendulum.

As = 2RI = w(x* + h?) (9)
_3(2R—h)’

where x and ¢ are the foundation radius and the contact angle of
the droplet given by

x* =2Rh — I (11)

and

sin § = x/R (12)

We now consider spreading of the droplet from the initial
spherical shape along the flat surface (Fig. 2(b)). The total
volume of the droplet remains constant, so that

4 3
R=R
0(2—30050—i—cos3 0)

where R, is the initial radius. If the droplet spreads along the
liquid surface (of the same liquid), the change of the net surface
free energy is given by the free surface energy times the area of
the droplet minus the foundation area.

(13)

IT = vy, R*(1 — cos 6)°

4
2 —3cos f+cos’d

= YLTCROZ( )i(l —cos )’ (14)

The plot of energy as a function of ¢ for a corn oil
droplet of R, = 0.25 mm and y;, = 0.032 N m~' is shown in
(Fig. 2(c)), and it is observed that § = 180° corresponds to the
unstable equilibrium, similar to an inverted pendulum.
Therefore, it is convenient to introduce the variable ¢ =

This journal is © The Royal Society of Chemistry 2014

180° — 6 to characterize the shape of the droplet so that ¢ =
0 at equilibrium.

Consider now the flat surface vibrating as u = A cos Q¢. The
dynamic equation of motion of the droplet in the vicinity of the
unstable equilibrium is

x¢+6¢+g:Q¢ (15)
where x is the inertial coefficient associated with droplet's
shape change, § is the viscous constant, and Q,, is the periodic
force from the substrate affecting the droplet shape change. The
force Q, includes a term proportional to the area of contact,
x> = m(Rop)’, and a term proportional to the length of the
contact line 27tx = 27tRy@; however, for small ¢, the second term
prevails. Furthermore, assuming that non-linear viscous force
acts in the thin film of air, we assume that the force Q, includes
a term proportional to the velocity & and squared velocity .
The latter term is present due to hysteresis, i.e., the viscous force
during the forward motion is different from that during the
backward motion

0, = 2T Rypla; AQ sin Q1 + ay(AQ sin Q1)*] (16)
where «; and «, are coefficients corresponding to the linear and
non-linear components of the force.

To estimate the values of the parameters x, 6 and k we use
the following considerations. When the droplet is deformed,
the work done per unit time is proportional to the momentum
dx
dt
droplet. From Fig. 2(a),

of droplet and thus m—dx = x¢@d¢, where m is the mass of the

Rsinf =R 4 % 0
A= 0(273cos0+c0536) .

dx o
For 6 close to 180° (or ¢ — 0°), do = R,. This gives
@
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X = mRy (17)

Similarly, one can argue that the viscosity of the liquid, u is
related to 8 as

6= uR, (18)
For 6 close to 180° (or ¢ — 0°),
0’11
k= |— = 4y, TRy’ (19)
d¢? o—0°

Using in eqn (16), (sin Q¢)* = (1 — cos2Q¢)/2 and
substituting the amplitudes f; = 2mRyp;AQ and f, =
2TRypa,A”Q” into eqn (1) yields for the effective “levitating”

force
.2 2
. ( £ b 2)
0o \2xQ*  8xQ

_ 4m? ARy

(20)
(40512 + 0[2214292)(0.

For a corn oil droplet (density ~ 900 kg m™—3, vy, = 0.032 N
m™~ ") with R, = 0.25 mm we can estimate y = 1.86 x 10~ "' kg m,
and k = 2.51 x 10~ % N m. It is difficult to estimate the coeffi-
cients «; and «, involving the linear and non-linear compo-
nents of viscosity in the thin air layer. However, the values of oy
and «, are not of interest by themselves, but due to the fact that
the viscous force in the form of eqn (16) results in a stabilizing
force linearly proportional to ¢ as given by eqn (20), which is
also dependent on Q.

We note the parallelism between these two systems: the
inverted pendulum and the droplet on vibrating foundation.
Thus, for a non-vibrating foundation, the position of the
spherical drop on top of the liquid surface corresponds to
maximum energy and therefore it is similar to the unstable
equilibrium of the inverted pendulum. Vibrating foundation
can stabilize the inverted pendulum. In the following sections,
we will consider other systems with a somewhat similar
behavior.

2.3 The “Indian rope” trick

Another interesting phenomenon related to the vibro-levitation
is the “Indian rope” trick. The famous trick involves a magician
(an Indian fakir) holding a flexible rope, which under certain
conditions levitates like a vertical rod. While accounts for the
trick remain controversial, Mullin et al*” suggested that the
rope, modeled as a flexible beam, levitates due to vibrating
foundation causing the parametric excitation similar to the
inverted pendulum.

Shishkina et al.*® investigated a rope treated as a flexible
Euler beam with the stiffness k subjected to the gravity and an
axial load oscillating near the constant value of ¢* with the
amplitude ea® and frequency Q. The transversal deflection of
the beam u(x,?) is governed by

4636 | Soft Matter, 2014, 10, 4633-4639
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a*u ) 2. du ) > du
+k@+ (¢ + eQsin Qt)aJr (¢ + eQ*sin .Qt)x@:

(21)

o
12

They showed that effect of the oscillating load is equivalent

to the increase of the effective flexural stiffness of the rope, &,
202

which becomes equal to keg =k+ 5 x*, where x is the

distance along the rope. This increase can be significant to
exceed the critical value of the stiffness and prevent buckling of
the beam (Fig. 3).

The same result can be obtained directly by setting the
amplitude in eqn (1) as

du d’u
— 0%, 0H
f=eQ (6x+xax2)
2
The effective force is then calculated, using <% ZTLZ{> =0
and (?Z_u ' 1 as
9x2 2

a [ f? £0°
=2 (L) 2
ax (292) 2 "

(22)

(23)

2.4 Cornstarch monsters and other effects

Colloidal suspension of cornstarch in water is a common
example of dilatant or shear-thickening fluid. If the cornstarch
suspension is taken in hand and squeezed, it can be observed
that the suspension turns solid and its surface feels powdery. As
soon as the pressure is released, it returns back to its initial
flowing state.
Peclet number (Pe) which is the ratio of hydrodynamic to
diffusion transport rates governs the behavior of colloids.
rzé_u
_ rate of advection gy

e=———————————— =—= where ris the particle radius, D
rate of diffusion D’ P ’

. o . u . .
is the diffusion coefficient, and ) is the shear rate. At high Pe

(high shear rates) the hydrodynamic forces are too strong for

£202

2
X
2

keff = k+

x

gsin Qt
- . - AAA
no vibration vibration

(a) (b)
Fig. 3 (a) A rope which is under no vibration, buckles under its own

weight (b) vertical vibrations results in an increased effective stiffness
which prevents buckling.

This journal is © The Royal Society of Chemistry 2014
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Fig. 4 (a) Cornstarch monsters formed on a vibrating foundation, (b) a

simplified equivalent system of multiple pendulums on a vibrating
foundation, in which the masses my, ms..., m, correspond to hydro-
clusters of cornstarch particles.

the diffusion transport to restore the equilibrium of colloidal
particles in the suspension. This non-equilibrium state consists
of particles clustering together, called hydroclusters.*

The hydroclusters are a non-equilibrium state, returning to
the equilibrium state of randomness and fluidity once the shear
stress is removed. For the system of cornstarch colloidal
suspension in water, it is observed that the “cornstarch
monsters” levitate on a vibrating surface like an inverted
pendulum or the rope in the “Indian rope trick” (Fig. 4(a)). The
harmonic vibration of foundation again is seen to stabilize this
system in its far-from-equilibrium state.

The hydroclusters formed in cornstarch on application of
stress can be simplified into a system of multiple pendulums as
shown in Fig. 4(b). High strain rates due to the harmonically
vibrating foundation causes formation of hydroclusters of
cornstarch particles in water. The hydroclusters of masses m,
m..., m, (separated by distances Iy, l,..., [,) are assumed to be
held together by the viscous forces in the surrounding medium.
This reduces the phenomenon of cornstarch monsters into a
problem of stability of chain of inverted pendulums.

The idea of correlating systems having non-linear vibration
induced effects can be generalized in several ways. First, dynamic
composite materials with tunable stiffness of reinforcement
fibers have already been proposed in the literature.** Second,
vibration-induced stabilization and destabilization can be used
for effective phase transition control leading to effective
“freezing” (in the case of vibrating droplets), “melting” (in the
case of the granular material), or “strengthening” of a flexible
fiber. Third, in the case of vibro-levitation, a “levitating force”
(denoted by V) is introduced, which is a slow effective force cor-
responding to the fast small vibrations of the foundation. In the
next section we will investigate three types of vibro-levitation.

3 Experimental set-up

We investigated experimentally three different types of levita-
tion, induced by vibrating foundation: levitating oil droplets

This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Experimental set-up.

over a vibrating oil bath, the “cornstarch monster” protrusions
over a vibrating non-newtonian liquid (cornstarch suspension),
and the “levitating Indian rope trick”. A 6.5 inch speaker cone
(Pyle Company) formed the vibrating foundation in this study.
Sinusoidal waves at a desired frequency (10 Hz < Q < 1000 Hz)
were generated using a Matlab code, which were then amplified
using a 20 W amplifier (Lepai) and fed to the speaker (Fig. 5).
The vibration of the speaker cone was of the form x = A cos Q¢.
Since the amplitude of the sound wave was not a controlled
parameter, the loudness setting was kept constant during the
experiment.

Liquids used were water, corn oil, SAE 30 engine oil, and
10W40 engine oil. We also used two samples of cornstarch
suspension in water, with the starch-to-water volume propor-
tions of 1.5 :1 (sample A) and 2 :1 (sample B). The working
liquid was placed at the center of the speaker cone to form a
bath. Once the speaker was excited by the sound wave, a small
drop (typically about 0.1 puL) of the same liquid was dropped on
to the surface of the liquid bath using a syringe. This produced
satellite droplets which levitated at certain frequencies of
vibration of the speaker cone. Levitating droplets could also be
produced by pinching and lifting off the liquid surface using a
pipette tip/needle. A similar simple experiment was conducted
to test the levitation of a rope under harmonic excitation of the
foundation. A piece of plastic rope 7 mm long, 4 mm wide and
1 mm thick was affixed to the center of the speaker cone using
adhesive tape. Then the sound was turned on so that the
speaker cone started to vibrate harmonically and the motion of
the rope was observed.

4 Results and discussions

In the first experiment, pure water did not produce levitating
droplets in the frequency range that it was tested for. However,
the higher viscosity liquids, corn oil (Fig. 6(a)), SAE 30, and
10W40 all produced levitating drops in the frequency ranges
listed in Table 1, which is consistent with eqn (20). Note,
however, that in each case a certain frequency range was
observed. In other words, besides a lower frequency limit cor-
responding to the stability onset there was an upper frequency
limit above which the droplet was not stable. Using the analogy

Soft Matter, 2014, 10, 4633-4639 | 4637
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(a) A droplet of corn oil levitating on the surface of corn oil vibrating at 150 Hz, (b) ‘cornstarch monsters’ in sample A at 30 Hz, (c) rope on a

foundation vibrating at 130 Hz (movies provided in the ESIt), and (d) Ince—Strutt diagram showing shaded stable region, and the frequency range

where levitating droplets are observed.

Table 1 Frequency range where stable levitating droplets were
observed

Viscosity Surface Frequency
Liquid (Pa's) tension (N m™) range (Hz)
Water 0.001 0.072 NA
Corn oil 0.052 0.032 35-350
10W40 0.160 0.031 30-400
SAE 30 0.400 0.031 30-400

with the inverted pendulum, this may be due to the fact that
for high frequency the assumptions of small vibration may not
be valid.

The droplets were seen to levitate for several minutes.
However, the droplets coalesced with the bath as soon as the
sound generation stopped. Outside the specified frequency
range the levitating droplets were highly unstable, coalescing
with the bath after a short while. At low frequencies it was
clearly visible that the interaction between the levitating droplet
and the bulk liquid surface created a surface wave. It was also
possible to have multiple droplets levitating at the same time.
The dependence of the stability of multiple levitating droplets
on the frequency was not conclusive from the experiments
conducted. Increasing the amplitude of vibration by increasing
the loudness resulted in the levitating droplet ‘walking’ on the
surface of the liquid bath in seemingly random paths as previ-
ously seen by Couder et al.** Again, the dependency of hori-
zontal motion of droplets to the amplitude could not be
conclusively studied since the loudness could not be precisely
regulated.

In the second experiment, samples A and B of cornstarch
suspensions formed so-called “cornstarch monsters” (or “figu-
rines” with long “fingers”) within a certain range of frequencies
(Fig. 6(b)). The typical figurines were visible in both the samples
from 15 Hz to around 200 Hz after which they slowly dis-
appeared. The visible difference between the samples was that
sample A produced longer cornstarch figurines than sample B.

In the third experiment with the rope, it was seen that rope
became unstable from its static equilibrium position when the
foundation was vibrated at certain frequencies (Fig. 6(c)).
Instabilities were seen to set in at around 17 Hz. The rope
became highly unstable in the frequency range 50 Hz to 130 Hz.

4638 | Soft Matter, 2014, 10, 4633-4639

The instabilities slowly disappeared around 200 Hz and the
rope returned to its static equilibrium (buckled) state, which is
consistent with eqn (23).

The standard approach to the stability analysis often
involves the so-called Ince-Strutt diagram (Fig. 6(d)) for the
Mathieu equation (eqn (7)), which can be more conveniently
presented as

d’z

de
where © = Qt/2, a = (g/L)(2/Q)?, ¢ = 4A/g. The Mathieu equation
is known to have the region of stability*® for

+ (a—2ecos2t)z=0 (24)

(25)

where the exact shape of the branches is given by a series.

The effective “levitating” force method provides an alterna-
tive approach. For vibrating oil droplets, the stabilizing force is
given by eqn (20). For cornstarch, which is a strongly non-
newtonian liquid, the non-linear effects, such as the increase of
the viscosity with flow velocity, can be responsible for the raise
of the “fingers”. However, the system is similar to a chain of
inverted pendulums on a vibrating foundation. For the “Indian
rope”, the mechanism is similar to the stabilization of the
inverted pendulum on a vibrating foundation, and the force is
given by eqn (23). From the qualitative results described above,
it is apparent that the stability of levitating droplets has a
dependence on the frequency of vibration of the foundation.
This can be considered analogous to the stability of an inverted
pendulum. The lower and upper limits of the stable region are
determined by the frequency range in which indefinitely stable
levitating droplets are observed.

5 Conclusion

In summary, we investigated the effect of vibration on the liquid
droplets. Theoretical analysis showed that the effect of vibrating
substrate can result in parametric excitation of the droplet
leading to the stability of its maximum energy state on top of the
vibrating liquid surface. The effect is similar to the stabilization
of the inverted pendulum with vibrating foundation and can be
interpreted as the action of an effective stabilizing force

This journal is © The Royal Society of Chemistry 2014
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(“levitation force”) caused by fast vibrations with small ampli-
tude. Similar effects are observed in other experiments
involving levitation, such as the “cornstarch monster” and
“Indian rope trick”.
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