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(Ir)reversibility in dense granular systems driven by
oscillating forces†

Ronny Möbius and Claus Heussinger*

We use computer simulations to study highly dense systems of granular particles that are driven by

oscillating forces. We implement different dissipation mechanisms that are used to extract the injected

energy. In particular, the action of a simple local Stokes' drag is compared with non-linear and history-

dependent frictional forces that act either between particle pairs or between particles and an external

container wall. The Stokes' drag leads to particle motion that is periodic with the driving force, even at

high densities around close packing where particles undergo frequent collisions. With the introduction of

inter-particle frictional forces this “interacting absorbing state” is destroyed and particles start to diffuse

around. By reducing the density of the material we go through another transition to a “non-interacting”

absorbing state, where particles independently follow the force-induced oscillations without collisions. In

the system with particle–wall frictional interactions this transition has signs of a discontinuous phase

transition. It is accompanied by a diverging relaxation time, but not by a vanishing order parameter,

which rather jumps to zero at the transition.
1 Introduction

Driven colloidal or granular systems represent important
models for the study of non-equilibrium processes. The
competition between energy-injection from the driving and
energy-extraction from thermal or non-thermal dissipative
processes leads to non-equilibrium stationary states that may
be quite different from their thermal counterparts. Frequently,
the driving force consists of periodically repeating signals.
Especially for granular systems many different driving mecha-
nisms have been invented that belong to this category, for
example oscillatory shear,1–3 temperature oscillations4,5 or
shaking.6

Non-Brownian particles immersed in high-viscosity uid
formally obey the Stokes' equation and thus should present
time-reversible dynamics under periodic driving forces. A recent
study7 shows that this reversibility can be broken when driving
amplitude or particle density gets too high. The breaking of
time-reversibility must be due to additional forces that are not
accounted for in the Stokes' equation, for example in the form
of direct particle–particle frictional interactions. A simple
model8 to capture this irreversibility is obtained by adding
random displacements on genuinely reversible particle trajec-
tories. With the relaxation time diverging at the transition it is
st University of Göttingen, Friedrich-Hund
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believed to be a critical point that belongs to the universality
class of conserved directed percolation.9

This reversible–irreversible transition has also been looked at
by simulations in the context of the yielding transition of
amorphous solids.10,11 Cyclic shear with amplitudes below a
critical value leads to particle trajectories that are periodic with
the external force. Larger amplitudes lead to irreversible
dynamics. Apparently, below yielding the system self-organizes
in such a way as to trap itself deep down in the energy landscape,
where barriers are too large to be overcome for the given strain.

In this contribution we obtain yet another view on the revers-
ible (or irreversible)motion of periodically driven particle systems.
We ask about the role of frictional interactions in this self-orga-
nization. To this end we dene different model systems that allow
assessment of the interplay between the periodic driving force and
different dissipative processes using fast computer simulations.
In particular, we will test a simple linear Stokes' drag force against
non-linear and history-dependent (dry) friction forces.
2 Model

We simulate a monolayer (xy-plane) bi-disperse system of N ¼
2500 particles each with a mass density of r. One half of the
particles have radius Rs ¼ 0.5d (small particles), the other half
have radius Rl ¼ 0.7d (large particles). The masses are accord-
ingly ms,l ¼ (4pr/3)Rs,l

3. We choose the simulation box length L

such that we have a xed packing fraction f ¼
XN
i¼1

pRs;l
2=L2. In

order to minimize nite-size effects, we use periodic boundary
conditions in both directions.
This journal is © The Royal Society of Chemistry 2014
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Two particles i and j are in contact, if their distance is smaller
than the sum of their radii, r < Ri + Rj. Contacting particles
interact via the pair force:

~Fij ¼ (Fn + Fn,d)n̂ij + (Ft + Ft,d)t̂ij (1)

where n̂ij and t̂ij are unit vectors between the pair in normal and
in tangential directions, respectively. Fn ¼ kn (r � (Ri + Rj))
models a harmonic spring with a spring constant of kn. Fn,d ¼
�gnyij,n is a damping term in the normal direction proportional
to the velocity difference yij;n ¼ ð~yi �~yjÞ$n̂ij with the normal
damping constant gn. Ft introduces a shear force modelling dry
friction

Ft ¼ kt

ðt
t0

�
t̂ij$~yij

�
ds (2)

which sums up the tangential displacement since formation of
the contact at time t0. kt is the tangential spring constant.
Finally, Ft,d¼�gtyij,t describes a damping term in the tangential
direction analogous to the one in the normal direction:
yij;t ¼ ð~yi �~yjÞ$̂tij . In addition, the tangential force is limited by
the Coulomb condition Ft # mFn (m is the friction constant).

The main dissipative forces are modelled in two ways: A
”viscous” system and a ”surface” system. In the viscous system a
velocity dependent damping force affects each particle:
~Fv ¼ �gy~y (gy is the viscous damping constant). This models a
viscous liquid, in which the particles experience a volume
independent drag. In the surface system the particles are placed
on a surface. The surface–particle interactions are the same as
between two particles. Due to the shear force with the surface,
the particles experience friction while moving.

With the following driving force energy is injected directly
into the bulk of the system. The small particles are driven with
an oscillating force F(t) ¼ F0 sin(ut) along the plane in the
y-direction (as sketched in Fig. 1), possibly leading to collisions
with the passive big particles. In case of collisions, small and big
particles do not return to their initial position. Without colli-
sions active particles, aer a full force cycle, do return to their
initial position.

In the simulation and in the following wemeasure lengths in
units of diameters of small particles (d¼ 1), densities in units of
r (r ¼ 1) and times in units of driving force period (T ¼ 1 and u

¼ 2p). The parameters for the forces are given in Table 1. Unless
Table 1 Parameters for the forces as used in the simulations of the
surface system. Whenever different values are used for the viscous
system they are given in brackets. The particle–surface forces are only
used in the surface system. For the viscous system the parameter gy
acts equivalently to the parameter gt in the surface system. Frictional
forces may be turned off by setting the friction coefficient m ¼ 0

Parameter Particle–particle Particle–surface

kn 1000 1000 (�)
kt 2/7kn 2/7kn (�)
gn 0.5 100 (�)
gt 0 5 (50)
m 0 (1) 1 (�)

This journal is © The Royal Society of Chemistry 2014
stated explicitly, the driving force amplitude is set to F0 ¼ 1.6 in
the surface system, and to F0 ¼ 100 in the viscous system.
Newton's equations of motion are integrated with a time-step of
Dt ¼ 0.001 and using the LAMMPS program.12,13
3 Results

To quantify the inter-cycle motion of the particles we dene the
mean-square displacement (MSD) aer an integer number of
force cycles (“stroboscobic imaging”)

D2ðn;mÞ ¼
*
1

N

XN
i¼1

�
xiðtn þ tmÞ � xiðtnÞ

�2+
(3)

where xi(t) is the x-coordinate of particle i at time t and tn ¼ nT
represents integer multiples of the driving period. With this
denition the intra-cyclic motion of the particles is naturally
masked and only the inter-cyclic motion is picked up. If the
MSD turns out to be zero, then this indicates that particle
motion is periodic with the driving force. Such a state is called
absorbing, as there are no uctuations that can drive the system
away from it. In a stationary state, the MSD is independent of n,
D2(n,m) h Ds

2(m). We will also be interested in how the
stationary state is approached. To this end, we dene the
following “activity”

A(n) ¼ D2(n, 1)/D2(0, 1) (4)

which measures the MSD aer just one cycle, taken relative to
the start of the simulation.

We start by considering systems at density f¼ 0.82, which is
close to the critical jamming density fJ ¼ 0.843.
3.1 Stokes' drag

Let us rst consider the case where dissipation is governed by a
simple Stokes' drag force~Fy ¼ �gy~y, and no frictional forces are
present (m ¼ 0). By choosing gy large enough we arrive at a
dynamics that is overdamped and where the particle mass m
plays no role.

Note, that at the level of two interacting particles this drag
force does not lead to reversible trajectories. Particles will
simply push each other out of their way until there is no
interaction any more. This is different, therefore, from the
Fig. 1 Sketch of the modeled system. All small particles are driven
periodically in the y-direction. The boundaries are periodic in both x-
and y-directions.
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hydrodynamic interactions of the Stokes' equation which lead
to fully reversible trajectories.

Perhaps surprising, we nevertheless nd that the N-particle
system evolves into a stationary state where particles show no
inter-cycle motion and Ds

2(m)h 0. As shown in Fig. 2, the intra-
cycle motion in this stationary state is non-trivial, with the
particles tracing complex loops. This indicates that particles
permanently interact with their neighbors, but these interac-
tions are such that periodic trajectories result.

This is quite different from the situation encountered in the
colloidal experiments and simulations of ref. 7 and 8. There, the
particles can arrange in such a way as to avoid any particle
interactions. Once this is achieved, a non-interacting absorbing
state is reached. The intra-cycle trajectories for this scenario
would correspond to straight lines (and not loops) that are
traced out by going back and forth.

The presence of these loops has been noted previously14 and
discussed extensively by Schreck et al.,15 where the name “loop-
reversible states” has been introduced.
3.2 Frictional interactions

Let us now ask how far frictional interactions affect these loop-
reversible states. We will study two different scenarios, where
friction either acts between particles or between particles and
an exterior container, e.g. a horizontal plate on which the
particles are placed in a two-dimensional experiment.3,6,16,17
Fig. 2 Without friction particle motion is periodic with the external
driving and trajectories form closed loops (f ¼ 0.82). (a) x-coordinate
vs. time t. (b) x(t) vs. y(t).

4808 | Soft Matter, 2014, 10, 4806–4812
3.2.1 Inter-particle friction. We start by discussing the case
of inter-particle friction. The acting forces are as before, just
now we consider the case of a nite friction coefficient m ¼ 1.
With this choice, forces between contacting particles also act in
the tangential direction. Moreover, these forces cannot be
derived from a potential energy and depend on the particle
history.

It is known that frictional forces can have a rather strong
inuence on the rheological behavior of dense particle systems.
In granular suspensions, for example, inter-particle friction
leads to the dramatic effect of discontinuous shear thick-
ening,18,19 where suspension viscosity increases by orders of
magnitude.

Here, friction destroys loop-reversibility, as is readily
apparent from Fig. 3. Depicted is the trajectory of a test particle
over a few hundreds of cycles. We clearly see the slow evolution
of nearly periodic cycles. Thus, with the introduction of a
history-dependent frictional force, the particle motion is
irreversible.

Interestingly, at long times it is also diffusive. There is no
glass-like regime, where particles would be conned to cage-like
regions. At rst sight this is unexpected, as the particle density
is rather high and way above the usual hard-sphere glass tran-
sition density. However, it should be remembered that we are
dealing with an overdamped and non-thermal system. There
can therefore be no entropic connement, characteristic of the
hard-sphere glass. This will become clearer in the next section,
where we discuss the effect of particle–wall friction. It will turn
out that one can go through a uid–glass transition by
increasing the amplitude F0 of the driving force.

3.2.2 Frictional plate. In the following we will assume no
inter-particle friction, i.e. m ¼ 0. Instead, we introduce a friction
coefficient ms ¼ 1 between particles and a horizontal plate, on
which the particles are assumed to be placed.

Here, we choose the surface-friction ms to act only on the
driven small particles, while the Stokes' drag gy is assumed to
act only on the passive large particles. Different combinations of
ms and gy are possible, leading to qualitatively similar results.14

In this setting the driving amplitude F0 becomes an impor-
tant control parameter. This role is highlighted in Fig. 4a, where
we plot the MSD Ds

2(m) for three different values of F0.
Fig. 3 By adding inter-particle friction the loops are not closed but
slowly evolve over time. As a result the particles diffuse around.

This journal is © The Royal Society of Chemistry 2014
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Fig. 4 (a) MSD Ds
2 vs. lag time for different driving amplitudes (f ¼ 0.825). For high driving forces particles are efficiently trapped in their

neighboring cages. For small forces the MSD evidences intermediate super-diffusive and terminal diffusive regimes. (b and c) Velocity vs. time for
a typical undriven particle for a small (b) and large (c) driving force, respectively.

Fig. 5 Activity A as a function of simulation time for different packing
fractions f; an overdamped viscous system with inter-particle friction
and no wall.
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First, a nite MSD indicates irreversible dynamics. Thus,
reversibility is destroyed just as with inter-particle friction (here,
due to the inertial dynamics of the driven particles). At short
times, increasing the driving amplitude increases the particle
activity as is to be expected. At long times, however, the roles are
reversed. Small driving amplitudes lead to strongly diffusing
particles, while for large amplitudes, particles are trapped in
nearest-neighbor cages, like in a glass. Thus, the system
undergoes an inverted glass-transition, namely by increasing
the driving amplitude. Noticeable is the pronounced super-
diffusive particle motion on intermediate timescales before the
diffusive regime sets in. This has been the subject of our
previous publication.14 There, we have argued that this transi-
tion can be understood in terms of a competition between
frictional dissipation and randomization via collisions (Fig. 4b
and c).

Consider the passive (large) particles. As they are not driven
themselves, they only move because they are kicked around by
the driven (small) particles. For small driving amplitudes these
kicks are very weak and only temporarily mobilize the passive
particles. The particles undergo some small slip displacement
and quickly come to rest before the next kick occurs. Thus, all
the momentum from the kick is immediately lost to the surface.
This is evident in Fig. 4b as the intermittent behavior of the
velocity of a typical large particle.

By way of contrast, at high driving amplitudes (in the glassy
phase) this momentum is rst redistributed (via collisions) to
other particles before it is dissipated away. As a consequence
the associated particle velocity is strongly uctuating and never
goes to zero (Fig. 4c). It is this randomization which leads to the
caging of the particles.
3.3 f-dependence

Up to now we have considered systems at rather high densities
close to the critical jamming density fJ ¼ 0.843. For these dense
systems not much space is available for particle motion. Driven
by an external force, particles therefore necessarily come into
contact and strongly interact.

In the following we want to discuss the effects of lowering the
density away from the jamming threshold. This will generate
more space for particle motion and self-organization into an
This journal is © The Royal Society of Chemistry 2014
absorbing and non-interacting state will be possible. We start
with the overdamped viscous system of Section 3.2.1, where
interparticle friction introduces activity into an otherwise loop-
reversible system.

Fig. 5 displays the evolution of the particle activity A (as
dened in eqn (4)) with the simulation time for different
packing densities f. For small densities the activity quickly
decays to very small values. The system thus reaches an
absorbing state, and particles can arrange in such a way as to go
out of each other's way (during their cyclic motion). As density is
increased the time-scale for this decay increases. Above a critical
density, a quasi-plateau is formed at intermediate times (“active
state”, 500 ( n ( 104), and a terminal relaxation occurs at very
long times n T 104.

It is this slow process which makes a quantitative analysis of
these results not very meaningful. For example, the relaxation
time-scale shows complex behavior depending on the scale of
the activity that one is interested in.

The presence of the quasi-plateau and the terminal relaxa-
tion in the active state are worrisome also from the point of view
that no real stationary state is formed. The snapshots, Fig. 6,
make clear what is happening. As time proceeds the active
particles (black) segregate from the passive particles (orange/
Soft Matter, 2014, 10, 4806–4812 | 4809
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Fig. 6 Snapshots of the particle configuration of the viscous system
taken at different times (f ¼ 0.775). Active particles are depicted in
black, passive particles in orange/gray. After a few thousand force
cycles particles segregate into stripes oriented perpendicular to the
driving direction.

Fig. 7 (a) Structure factor S(qx ¼ 0, qy) (SF) for the three different times
displayed in Fig. 6. The stripe pattern is evident as a peak at small qy that
increases with simulation time.

Fig. 8 Snapshots of the particle configuration of the surface system
taken at different times (f ¼ 0.795). No structure formation is
observed.
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gray) forming stripes in the direction perpendicular to the
driving. This pattern formation is the reason for the absence of
a real plateau in the activity. The slow terminal relaxation of the
activity then corresponds to the coarsening of the pattern.

Fig. 7 displays the structure factor S(q) of this pattern at
times corresponding to the snapshots in Fig. 6. The segregation
is particularly evident in the y-direction with qx ¼ 0. Similar
segregation phenomena have been observed in different gran-
ular systems, in experiments6,20 as well as in simulations.21–23

By simulating a mono-disperse system with Gaussian
distributed particle radii, we checked that the stripe formation
is not dependent on the bi-dispersity of the system, but the
segregation is a consequence of driving a fraction of the parti-
cles differently, which is also supported by the work of Pooley
and Yeomans.21

Interestingly, we do not observe the stripe-formation when
we consider the surface system, where friction only acts between
a particle and the container wall (see Fig. 8‡). This second
system is closest to the simulations in ref. 21, where stripe-
formation is indeed seen. Parameters are quite different,
however, and we work at a much higher oscillation frequency.
This leads to much smaller oscillation amplitudes which, in our
‡ For this gure we have switched off the Stokes' drag completely and assumed
surface friction to act on both types of particles.

4810 | Soft Matter, 2014, 10, 4806–4812
case, are quite small as compared to the particle diameter. We
have checked that by decreasing the frequency to appropriate
values the stripes quickly form. This is compatible with the
phase diagram presented in that study. The driving frequency
primarily determines the maximum distance over which parti-
cles move during force oscillations. Smaller frequencies
meaning larger distances, and therefore a stronger tendency to
demix.

Fig. 9 displays the activity as a function of time. As before a
transition from an absorbing to active state is observed at a
critical packing fraction f+. With the slow processes of struc-
ture formation absent in this system, we do observe a real
stationary state at high densities. No terminal relaxation of the
activity is noticeable.

Interestingly, the behavior of the activity shows signs of a
discontinuous transition between the absorbing and active state.
At the critical packing fraction the activity in the stationary state
is nite, Af+ðnÞ/Af+ðNÞ. 0. For given f < f+ the activity
follows the critical line for a while before it eventually decays to
zero. The closer the transition is approached, the longer it takes
to eventually relax. This scenario is quite similar to mode-
coupling theories for the glass transition.24,25

We quantify the relaxation timescale by xing the MSD to
D2(s, 1) ¼ 10�1. An order parameter OP of the transition can be
dened from the MSD in the stationary state OP ¼ Ds

2(1). Both
Fig. 9 Activity as a function of simulation time for different volume
fractions increasing from left to right; surface system with inertial
dynamics and particle–wall friction.

This journal is © The Royal Society of Chemistry 2014
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Fig. 10 (right axis) OP Ds
2(1) as a function of f defined as the MSD in

the stationary state. (left axis) Relaxation time-scale s as a function of f
defined via D2(s, 1) ¼ 10�1.
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quantities are displayed in Fig. 10 which show the expected
behavior: the transition (at f+ z 0.80) is accompanied by an
increasing time-scale and the order-parameter shows a very
rapid decay from the active to the absorbing state.

Interestingly, the order parameter is non-monotonic in the
active state and also decays towards higher densities. This
signals the vicinity of random close packing frcp, where packing
constraints inhibit particle motion. It would be tempting to
speculate that this onset is related to the second characteristic
packing fraction observed in ref. 16.
4 Conclusions

In conclusion, we have studied different densely packed driven
particle systems by computer simulations. We focused on cyclic
driving forces that directly act on a subset of the particles,
thereby injecting energy into the bulk of the system. Energy is
extracted from the system via different dissipation mecha-
nisms. We studied a simple local Stokes' drag force as well as
frictional forces that act either between particle pairs or
between particles and an external container wall.

We nd a surprising wealth of physical phenomena. The
local Stokes' drag leads to periodic particle motion even at high
densities around close packing. This represents a special kind
of absorbing state, where particles continually interact with
their nearest neighbors. Introducing inter-particle frictional
forces destroys this absorbing state and allows particles to
diffuse around. No glassy state is observed, however, which we
explain by the fact that particle motion is overdamped and no
temperature-like randomization is present.

In agreement with this argument we do observe a glassy
regime when particle inertia is important. By considering a
system with particle–wall friction we observe an inverted uid-
to-glass transition, where the glass is entered by increasing the
driving amplitude. In the uid phase particle motion is mark-
edly superdiffusive. We argued that for large driving amplitudes
the injected momentum (in combination with the Newtonian
dynamics) is randomized by collisions with neighboring
This journal is © The Royal Society of Chemistry 2014
particles. This randomization leads to entropic caging. By way
of contrast, for small driving forces, the momentum is quickly
lost to the surface. No connement is possible and particles can
diffuse around.

Finally, by reducing the packing fraction of the material we
go through a transition to an absorbing state, where particles
independently follow the force-induced oscillations, but
without interactions. We nd that this transition is accompa-
nied by particle segregation in the case of viscous interactions,
but not in the case of inertial dynamics. This latter situation
allows quantitative determination of the properties of the
transition. In contrast to the continuous transition scenario
proposed in ref. 7 and 8 we observe signs of a discontinuous
transition. It is accompanied by a diverging relaxation time, but
not by a vanishing order parameter, which rather jumps to zero
at the transition.

Some of these different features have readily been observed
in experiments, like the super-diffusive dynamics16 or the
segregation.6 A discontinuous transition into an absorbing state
has just recently been described in the work of Neel et al.26 A
more theoretical analysis on the discontinuous transition is
given by Xu and Schwarz in ref. 27, accompanied by
simulations.

Our work suggests a close link to the action of frictional
forces. It would be interesting to explore this link inmore detail,
both with simulations as well experiments.
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